新潟県中越地震を中心とした地震動のエネルギー特性の検討

- 長岡工業高等専門学校専攻科 学生会員 齋藤 明幸
 - (株)メノガイア 正会員 松田 音羽
 - 長岡工業高等専門学校 正会員 井林 康

1.はじめに

平成16年10月23日に発生した新潟県中越地震は,長岡 高専や長岡市をはじめとして,新潟県中越地方に甚大な被 害をもたらした.本研究では,昨年発生した新潟県中越地 震における地震波を用いて,単位時間に入力される地震入 力単位エネルギーと,構造物の等価吸収エネルギーの2者 に着目し,弾塑性応答解析を行わずにRC橋脚の被害の推定 を行う手法の検討を目的とした.

2.解析に用いた地震波および解析対象構造物

解析に用いた地震波は,防災科学技術研究所の強震ネットワーク(K-NET)と,気象庁(JMA)の地震資料より入手した 平成16年新潟県中越地震の加速度データ3例を用いた.方 角は,それぞれの地点で最大加速度の大きい方の方角を選 定した.各地震波の地震波名,観測地点,観測地点の震央 距離および最大加速度を表-1に示す.

解析には表-2 に示す道路橋鉄筋コンクリート単柱橋脚実 設計例 4 種を用いて解析を行った.検証のために行った弾 塑性応答解析は,1 質点系モデルとし, Newmark の β 法を 用いた逐次積分法によって算定した.減衰定数は 0.02,時 間刻みを 1/500 秒とし,履歴法則はトリリニア型を用いた.

3. 地震入力単位エネルギー

1 質点系の運動方程式の一般式は、次のように表される.

$$M\ddot{x} + C\dot{x} + F = -M\ddot{z} \qquad (1)$$

ここでM:質量,C:減衰係数,F:復元力,x:変 位, \ddot{z} :地震加速度である.式(1)の両辺に $\dot{x}dt$ を乗じて, 時間tについて地震動の開始t=0から $t=t_o$ まで積分すると, その右辺は地震終了時の総入力エネルギー量となり,これ を地震入力総エネルギーEとして式(2)となる.任意の t_1 に 対して式(2)の最大値を地震入力単位エネルギー Eと定義 し,式(3)のように示す.これを速度次元に変換して式(4)の

表-1 解析に用いた地震波

地震波名	観測地点	震快距離	最大加速度	
K-NET 長岡NS	長岡市千手	15km	468.4gal	
K-NET 長岡支所NS	長町市栖吉町前山	17km	870.4gal	
JMA小千谷EW	小千谷市城内	7.0k m	897.5gal	

図-1 等価吸収エネルギー

 V_E として比較検討を行った.また本研究では $\Delta t = T/4$ とした.

 $E \equiv \int_{0}^{t_{0}} M\ddot{z}\dot{x}dt \quad (2) \quad \Delta E(\Delta t) \equiv \max_{t_{1}} \left\{ \int_{t_{1}}^{t_{1}+\Delta t} M\ddot{z}\dot{x}dt \right\} \quad (3)$ $V_{\Delta E} = \sqrt{\frac{2\Delta E}{M}} \quad (4)$

4.構造物の等価吸収エネルギー

等価吸収エネルギーは構造物の 1/4 周期に地震動から入 力されるエネルギーに対応し,履歴系の正負の最大変位が 同じと考えたとき,復元力が0の点からの最大応答変位ま でが吸収エネルギー量であり,図-1の三角形の面積を等価 吸収エネルギーと定義できる.

5.解析結果

解析結果を図-2から図-5に示す.図の曲線は表-1の地震 波データから,それぞれ算定した地震入力単位エネルギー *V_{AE}*のスペクトルであり,図中の直線は表-2の橋脚を左から 順にP1,P14,P15,P4の橋脚の構造物の等価吸収エネルギ ー直線である. の4つのプロットは,比較のため に行った弾塑性応答解析の結果であり,仮定として*V_{AE}*と構 造物の等価吸収エネルギーが同じになるまで塑性化が進め ば,弾塑性の結果プロットは2つのグラフの交点上にプロ

キーワード 鉄筋コンクリート橋脚,耐震設計,地震入力単位エネルギー,等価吸収エネルギー,エネルギースペクトル 連絡先 〒940-8532 新潟県長岡市西片貝町 888 長岡工業高等専門学校 環境都市工学科 Tel:0258-32-6435

表-2 解析に用いた橋脚

No.	В	Η	а	Ν	SDI	d1	n	SDw	s	Т	
P 1	700	190	1000	364	D29	15.5	180	D16	15.0	0.256	
P 4	400	300	1100	1000	D32	12.0	84	D16	15.0	0.299	
P14	350	300	1050	1050	D38	15.0	84	D19	22.5	0.302	
P15	370	320	1050	1050	D38	15.0	84	D25	15.0	0.268	
B:橋脚の断面の幅(cm) (橋軸直角方向)											
¹¹ ・											
a:橋脚の高さ(cm) n:上載荷重(tf)											
SDI:軸方向鉄筋呼び名 SDw:帯鉄筋呼び名											
^{d :} 躯体最外縁から鉄筋中心までの距離 ^(cm)											
n:軸方向鉄筋本数 s:帯鉄筋間隔(cm)											
T: 初期固有周期(s)											

ットされると考えられるため,この結果が近いほど精度が 高いと考えられる.

図-2,図-3は、長岡市内で観測された波形である.K-NET 長岡とK-NET 長岡支所では、長岡支所のほうがかなり大き く算定されている.2つは同じ市内で観測された波形だが、 エネルギー量も波形の形状も違う.この違いは、地盤の違 いや震源の地盤からの方角に関係があると思われる.

図-4は, JMA小千谷のものであるが, プロットが1秒前後に集まっている.図-2 および図-3 の結果を踏まえると, 本研究での推定手法を適用するには,最大エネルギーが 150cm/sec程度までに限るのが適当ではないかと考えられる.

図-4のように,比較的エネルギーの大きな地震波では, 推定値と実際の弾塑性解析値であるプロットの位置がずれ ており,本推定手法はそのままでは適用出来ない.ここで 図中の は橋脚の初期固有周期であるが,構造物の塑性化 が進行したとしても,終局変位を超えるところまでは固有 周期が長くならずに手前で止まると考え,ここでは以下の3 つの算定式で求めたじん性率より,どの固有周期まで算定 すべきかを検討した. は引張鉄筋が終局ひずみに達する 点, は石橋ら²¹の, はじん性率評価 WG のそれぞれの じん性率評価式から求めた等価周期である.

図-5は,**図-4**の小千谷に対して,地震入力単位エネルギ ーV_{AE}とP14橋脚について示したものである.**図-5**より,固 有周期 と の間にプロットがあり,おおよそ固有周期 程度までを考慮すれば,精度よく算定できるのではないか と推測される.

6. 結論

本手法は,最大エネルギー量が150cm/sec 程度までの波形 では,比較的良い精度で算定できた.しかしながら,比較 的大きいエネルギー量の地震波では精度が良くなく,等価

吸収エネルギーの限界値を石橋らのじん性率算定式を用い て算定した等価周期のエネルギー値とすると比較的精度 が良くなることがわかった.

参考文献

- 井林康,中沢正利,尾坂芳夫,鈴木基行;地震入力総エネ ルギーおよび地震入力単位エネルギーを考慮した RC 橋脚 の損傷度評価の提案 土木学会論文集,676/V-51,1-11,(2001)
- 石橋忠良,吉野伸一;鉄筋コンクリート橋脚の地震時変形 能力に関する研究,土木学会論文集,390/V-8,57-66,(1998)