高強度鋼材を用いた矩形断面鋼製橋脚の耐力変形・性能シミュレーション解析

- ○独立行政法人土木研究所 正会員 二井 伸一
 - 独立行政法人土木研究所 正会員 運上 茂樹
 - 独立行政法人土木研究所 正会員 遠藤 和男

1. はじめに

本稿では、高強度鋼材(JIS SHY685)を用いた矩形断面鋼製橋脚の耐力・変形性能を把握することを目的として実 施した正負交番載荷実験結果¹⁾を踏まえ、シェル要素及びファイバー要素を用いて行ったシミュレーション解析結果に ついて報告する。

図-1

2. 実験及び解析概要

実験供試体の諸元及び断面図をそれぞれ表-1、 図-1に示す。実験は、図-2に示すように、供試 体を反力壁に固定し、降伏軸力の15%(=1,618kN、 公称降伏値 685N/mm²より算出) 程度の軸力を作 用させた状態で供試体基部から 1500mm の位置 に水平荷重を正負交番載荷した。実験手法の詳 細は文献1)による。

解析検討は、シェル要素モデル及びファイバ ー要素モデルを用いて弾塑性有限変位解析(繰 り返し及び単調載荷)を行った。シェル要素モ デルを図-3に示す。なお、ファイバー要素モデ ルにはせん断変形を考慮できる Timoshenko 梁 を用いている。解析は材料非線形性と幾何学的 非線形性を共に考慮した複合非線形解析とし、 応力-ひずみ関係は材料試験結果により設定し た完全弾塑性型とした。材料試験により得られ た応力-ひずみ関係及び機械的性質を図-4、表-2 にそれぞれ示す。本試験に使用した高強度鋼材 では、普通鋼材の応力-ひずみ関係に見られる明 確な降伏棚は無く、ひずみ硬化の程度も小さい ことが分かる。

解析における水平荷重の載荷は、ベルヌイ・ オイラーの梁理論から算出される降伏水平変位 δ_w(公称降伏値より算出、10.6mm)の整数倍 を変位制御で漸次増加させた。また、実験で与 えた載荷変位(指令値)もδ_wの整数倍とした が、実変位は異なる結果となった。本稿ではδ wをδ_k、実験における実変位をδ_kと表記する。

3.実験及び解析結果の比較

図-5 に荷重-変位関係の包絡線、表-3 に最大 荷重、最大荷重時変位の比較を示す。なお解析 結果の包絡線は、これまでの解析的な検討によ り最大荷重までの範囲であれば繰返し載荷によ る局部座屈等の影響は小さいことが分かってお

図-2 実験状況写真

表−1 供試体諸元	
断面外形寸法	400 imes 400mm
縦リブ寸法	$50 imes 8 { m mm}$
ウェブ・フランジ厚	8mm
ダイヤフラム間隔	250mm
載荷点高さ	1500mm
幅厚比 R _F *	0.302
幅厚比 R _R *	0.513
R _{Rib} *	0.587
the state of the s	

供試体断面図

※公称隆伏値より算出

表-2 機械的性質	
引張強さ	853.0 M/mm ²
降伏点**	798.7 N/mm ²
弹性係数E	$197.5 \mathrm{kN/mm}^2$
伸び	19.2%
絞り	51 1%

キーワード:鋼製橋脚、高強度鋼材、塑性変形性能、耐荷力 連絡先:〒305-8516 茨城県つくば市南原1番地6 TEL029-879-6773 Fax029-879-6736

り²⁰、単調載荷による結果としている。これより、ファイバーモデルによる解析が14%程度、シェルモデルによる解析 結果が8%程度、実験結果の最大荷重を小さく評価することが分かった。これは、解析で設定した完全弾塑性の応力-ひ ずみ等の影響と考えられるが、原因分析には更なる詳細な検討が必要である。また、シェルモデルによる解析結果がフ ァイバーモデルによる解析結果を7%程度上回る結果となった。これは、ファイバーモデルが一軸応力(軸方向)に基 づき降伏の判定を行っているのに対し、シェルモデルが二軸応力状態を考慮した von Mises の降伏条件に基づいた判定 をしていることの差と考えられる。

図-6、7 にシェルモデルの解析結果である圧縮フランジ基部付近(基部より約 20mm の位置、水平方向)及び圧縮フ ランジ中央(高さ方向)の軸ひずみ分布を示す。いずれの方向においても、解析結果が実験結果を概ね再現しているこ とが分かる。水平方向分布では、せん断遅れが原因と考えられるウェブ付近のひずみがフランジ中央部のひずみより大 きくなる現象が生じ、その程度は変位の増加と共に大きくなっていく。一方、高さ方向分布では、塔基部から一つめの ダイヤフラム間(第一パネル)にひずみが集中している。

4. まとめ

本シミュレーション解析による知見を以下にまとめる。

- ・ファイバーモデルによる解析が14%程度、シェルモデルによる解析結果が8%程度、実験結果の最大荷重を小さく評価した。これは、解析で設定した完全弾塑性の応力-ひずみ等の影響と考えられる。
- ・シェルモデルによる解析結果がファイバーモデルによる解析結果を 7%程度上回る結果となった。これは、各モデ ルでの降伏判定の違いによるものと考えられる。
- ・シェルモデルの解析結果である圧縮フランジ基部付近(水平方向)及び圧縮フランジ中央(高さ方向)の軸ひずみ 分布は、いずれの方向においても実験結果を概ね再現できることが分かった。

参考文献

- 1) 遠藤和男、二井伸一、運上茂樹:高強度鋼材を用いた矩形断面鋼製橋脚の載荷時実験、土木学会第60回年次学術講演会論文集、 (投稿中)
- 2) 遠藤和男、河藤千尋、運上茂樹:高強度鋼材を用いた矩形断面鋼製橋脚の変形・耐荷力性能に関する解析的研究、第7回地震時 保有耐力法に基づく橋梁の耐震設計に関するシンポジウム講演論文集、pp163 ~168、2004.1