粘土系遮水材の礫質地盤への漏出に関する実験

五洋建設	正会員	〇上田正樹	打 吉田誠
港湾空港技	術研究所	正会員	渡部要一

1. はじめに

管理型廃棄物海面埋立処分場の遮水護岸に用いる遮水材には,遮水性は当然のことながら,変形追随性,長期耐 久性、施工性、そして経済性が要求される.これらの条件を満足する遮水材の一つとして、筆者らは粘土系遮水材 の研究開発を行ってきた¹⁾.粘土系遮水材による遮水護岸構造としては、例えば、H形鋼矢板壁の継手隔壁内への

充填,護岸腹付土への直接打設などが想定される(図-1).施 工時の遮水材の含水比は液性限界wiの1.0~1.2倍程度であり、 高い流動性を有しているが、施工後にはチキソトロピーと自重 圧密により早期に流動性を失う. 矢板継手処理の不具合や, 遮 水材打設直後の護岸変形などにより矢板継手に目開きが生じる と、遮水材が周辺地盤へ漏出する可能性がある. このとき周辺 地盤の土の粒径が小さければ、目詰まりによる遮水材漏出防止 効果が期待できる.本報告は,礫質地盤の粒径と粘土系遮水材 漏出長の関係についてまとめたものである.

2. 実験概要

遮水材の周辺地盤への漏出は水平方向に広がっていくが, こ こでは製作が容易な鉛直模型を用いて実験を行った.実験装置 を図-2に示す.内径 200mm,長さ 1000mmのアクリル円筒内に 層厚 300mmの砕石層, その上に層厚 300mmの遮水材層を製作し, 製作1日後にピストンにより遮水材に所定の圧力を載荷して遮 水材漏出長を計測した. 遮水材はベントナイトと人工海水を混 練したものであり、ベーンせん断強さ(1day)は $\tau_{r}=1.1$ kN/m²で ある(表-1). また, 砕石には6号砕石と7号砕石(図-3)を 用いて間隙比 e = 0.6 程度となるように投入した.実験は砕石種 別と載荷圧力を変えて8ケース実施した(表-2).

3.実験結果と考察

表-1 粘土系遮水材の土質特性						
土質特性		遮水材※	単位			
遮水材の湿潤密度 $ ho_{ m t}$		1.497	g/cm³			
土粒子の密度 <i>ρ</i> 。		2.600	g/cm³			
遮水材の含水比 w		93.6	%			
コンシステンシー	液性限界w」	93.6	%			
	塑性限界w _P	32.6	%			
	塑性指数I _P	61.0	-			
ベーンせん 断強さ(1day) T _f		1.1	kN/m²			

※配合:ベントナイト773kg/m³+人工海水724kg/m³

表-2 実験ケースと実験結果

		実験結果					
実験ケース	砕石種別	砕石間隙比	載荷圧力	漏出長			
		е	p (kN/m²)	L (mm)			
Case1	6号	0.492	40	27.00			
Case2	7号	0.598	40	15.25			
Case3	6号	0.690	70	42.00			
Case4	7号	0.766	70	20.75			
Case5	6号	0.482	100	106.25			
Case6	7号	0.480	100	48.75			
Case7	6号	0.676	140	134.00			
Case8	7号	0.716	140	76.50			

廃棄物,遮水材,ベントナイト,礫質地盤,漏出

連絡先 〒329-2746 栃木県那須郡西那須野町四区町1534-1 五洋建設㈱ 技術研究所 TEL 0287-39-2111 圧力 p, 10%粒径 D₁₀, 間隙比 e と遮水材漏出長 L の関係を示す.漏出長は載荷圧力および 10%粒径と良い相関を 示していることがわかる.また,遮水材の漏出状況は写真-2に示す通りであり,砕石の間隙に一次元的に充填さ れている.ここで,漏出長 L の関係式を導出するために,複雑な砕石の間隙を間隙径 R の細管の集合体としてモデ ル化すると,細管における力の釣り合い式は p $\pi R^2/4=\pi R L \tau_{max}$ である(図-4).ハーゼンによると間隙径 R は 10%粒径 D₁₀と相関があり,また,間隙比 e に比例すると考えられるため(R \propto e D₁₀),以下の関係式が成立する.

L=C e D₁₀ p / τ_{max} 関係式① ここで、Cは間隙の形状、配列等を反映させた形状係数である. 本実験においては形状係数C=0.365 となった(図-8). この関係式は、例えば、図-1(b)連続遮水壁の周辺地盤への漏 出を考慮した材料割増率算定に活用できる.計算例として、C =0.365、e=0.7、D₁₀=3(mm)、p= γ 'z=4z(kN/m²)、 τ_{max} =1(kN/m²) のときL=3z[漏出長L(mm)、深さz(m)]. z=20m地点での漏出 長はL_{max}=60mm(=0.06m)となる.このとき遮水壁両面からの漏出 量Vは遮水壁延長1m当りV=[e/(1+e)L_{max}z/2]×2=0.49m³で あり、遮水壁の壁厚が0.5mの場合には、遮水高1m分の漏出を見 込んでおく必要がある(1m/20m=5%の材料割増率).

<u>4. まとめ</u>

今回の実験により,粘土系遮水材周辺地盤の10%粒径が2mm 以下の場合には,たとえ遮水材が漏出しても目詰まり効果によって漏出長は100mm以内に収まるものと考えられる.遮水材漏 出リスクを低減するためには中詰材等の粒度にも気を配りたい.

漏出状況(Case5,6)

写真-2

1) 山田耕一,上野一彦,羽田晃,土田孝,渡部要一:変形追随性遮水材料を用いた管理型海面廃棄物最終処分場の新し い遮水護岸構造の提案,海洋開発論文集 vol. 18, pp. 77-82, 2002.

-608-