1. Introduction

Numerous empirical relations for heat and mass transfer coefficients to predict the hourly or daily distilled water (production) for different type of solar stills have been developed\(^1\)\(^2\)\(^3\). Their mass transfer models in the still are described using the temperature and vapor pressure of the saline water surface and glass cover, neglecting the presence of intermediate medium, i.e., humid air and have used the following equation\(^1\) to calculate the evaporative heat flux density.

\[
q_{ew} = 16.273 \times 10^{-3} \ h_{cw} (P_w - P_{at})
\]

(1)

To enhance distilled water productivity, a new type of solar distillation, i.e., Tubular Solar Still (TSS) was designed by the authors and has been tested (since 2001) in the United Arab Emirates (UAE).

In this paper, an attempt was made to formulate the mass transfer in the TSS using the humid air properties.

2. Convective Heat Transfer Coefficient

The mass of air transferred from the saline water surface per unit area per unit time by free convection is

\[
m_a = \frac{q_{ew}}{C_{pa}(T_w - T_{ha})} = \frac{h_{cw}}{C_{pa}}
\]

(2)

The water vapor content of the air, i.e., the mixing ratio (mass of water vapor per unit mass of dry air) is written as

\[
m = \frac{m_a \cdot P_w}{M_a \cdot (P_T - P_w)}
\]

(3)

Thus, the mass flux density of water vapor transferred from the saline water surface to the humid air is

\[
m_{eww} = \frac{M_a \cdot P_w}{M_a \cdot (P_T - P_w)} \frac{h_{cw}}{C_{pa}}
\]

(4)

Similarly, the mass flux density of water vapor transferred from the tubular cover inner surface to the humid air is

\[
m_{ewci} = \frac{M_a \cdot P_{ha}}{M_a \cdot (P_T - P_{ha})} \frac{h_{cw}}{C_{pa}}
\]

(5)

The net mass flux density of water vapor transferred is given by the difference of Equations (4) and (5), i.e.,

\[
m_{ew} = \frac{M_a \cdot h_{cw}}{C_{pa}} \left[\frac{P_w}{(P_T - P_w)} - \frac{P_{ha}}{(P_T - P_{ha})} \right]
\]

(6)

The heat flux density transferred from the water surface to the humid air associated with the mass transfer of the water vapor is

\[
m_{ew} = \frac{M_a \cdot P_T (P_w - P_{ha})}{M_a \cdot (P_T - P_w)(P_T - P_{ha})} \frac{h_{cw}}{C_{pa}}
\]

(7)

where,

\[
C = \frac{M_a}{M_a \cdot (P_T - P_w)(P_T - P_{ha})}
\]

(8)

For an air-water vapor system at normal atmospheric pressure: \(P_T = 101325 \ \text{pa}, M_v = 18, M_a = 28.96\) are approved.

The production flux density is evaluated by

\[
m_{ew} = \frac{q_{ew} \cdot 3600}{L}
\]

(9)

or,

\[
h_{cw} = \frac{m_{ew} \cdot L}{C \cdot (P_w - P_{ha}) \cdot 3600}
\]

(10)

3. Field Experiments

Field experiments on the TSS have been carried out since September 2001, at the Hamuraniyah farm in Ras Al Khaimah Emirate in the UAE. The schematic diagram of the TSS is shown in Figure 1. The TSS is comprised of a tubular cover and a semicircular trough. The tubular cover is made of a curled transparent vinyl chloride sheet of 0.5mm in thickness and a transparent polyvinyl chloride bottle. The tubular cover is 1.26m in length and has an outside diameter of 0.134m. The black trough for storing saline water in the TSS is 1.0mm in thickness, 0.1m in outside diameter and 1.2m in length. Daily measurements of production were made at 7:00 and then saline water was supplied to the trough to maintain the initial volume of 1.5kg. Occasionally, the production was also measured on the hour from 9:00 to 20:00.

In this experiment, \(T_w, T_{ha}, T_{ci}\) and \(RH_{ha}\), were measured in the TSS using thermocouples and thermo-hygrometers. The

--

Keywords: Convective Heat Transfer Coefficient, Desalination, Humid Air, Tubular Solar Still

* Dept. of Arch. & Civil Eng., Fukui University, 3-9-1 Bunkyo, Fukui 910-8507, Japan, Tel:0776-27-8595,Fax:0776-27-8746

** JGC, 2-3-1 Minato Mirai, Nishi-ku, Yokohama, Japan, Tel: 045-682-1111, Fax: 045-682-1112
data was automatically recorded in a data logger at 30-minute intervals.

4. RESULTS AND DISCUSSIONS

In this paper, data of an arbitrary day (September 2, 2002) was used for the analysis shown in the above section. Fig. 2 shows the variation of \(\frac{h_{ew}}{hcw} \) with \(T_w \). It is seen that the value of \(\frac{h_{ew}}{hcw} \) is not a constant value of \(16.273 \times 10^{-3} \) used in Equation (1) as many investigators have pointed out. Table 1 shows the calculated value of \(\frac{h_{ew}}{hcw} \) using a regression curve obtained from Fig. 2.

Table 1 shows the calculated value of \(\frac{h_{ew}}{hcw} \) using a regression curve obtained from Fig. 2. Both values behave a same pattern from 9:00 to 20:00.

Fig. 3 shows the time variations of \(h_{ew} \) and \(hcw \). Both values behave a same pattern from 9:00 to 20:00.

Fig. 4 shows the relationship between \(D_{ph} \) and two kinds of vapor density differences, i.e., \((\rho_{vw}-\rho_{vha}) \) and \((\rho_{vw}-\rho_{vci}) \). The former relation is derived from the proposed idea and the latter is expressed based on the past theories that are represented with Equation (1). The scatter of plots for \((\rho_{vw}-\rho_{vha}) \) is smaller than that for \((\rho_{vw}-\rho_{vci}) \). It is seen that Equation (7) is better than Equation (1). Comparing \(D_{ph} \) to the same value of \((\rho_{vw}-\rho_{vha}) \) and \((\rho_{vw}-\rho_{vci}) \) in the morning and afternoon, the value of \(D_{ph} \) was slightly larger in the afternoon than the morning.

5. CONCLUSIONS

Many researchers have still now used the semi-empirical relation formulated by Dunkle\(^1\) for the internal heat and mass transfer in solar stills. In this paper it is observed that the value of \(\frac{h_{ew}}{hcw} \) is not a constant value of \(16.273 \times 10^{-3} \) formulated by Dunkle, rather than it is a function of water temperature in the still. It is also found that the humid air plays an important role in the mass transfer in the TSS.

NOMENCLATURE

\(C_{pa} \) specific heat capacity of air, J/kg °C

\(h_{cw} \) convective heat transfer coefficient, W/m\(^2\)°C

\(h_{ew} \) evaporative heat transfer coefficient, W/m\(^2\)°C

\(L \) latent heat of vaporization of water, J/kg

\(M_a \) molecular weight of air

\(M_c \) molecular weight of water vapor

\(m_{ew} \) distilled water flux density (net mass flux density evaporated from saline water surface), kg/m\(^2\) hr

\(P_{cw} \) saturation vapor pressure at \(T_{cw} \), pa

\(P_{ha} \) humid air vapor pressure at \(T_{ha} \), pa

\(P_{vha} \) humid air vapor pressure at \(T_{vha} \), pa

\(P_{vci} \) saturation vapor pressure at \(T_{vci} \), pa

\(P_{vci} \) saturation vapor pressure at \(T_{vci} \), pa

\(P_{vci} \) saturation vapor pressure at \(T_{vci} \), pa

\(P_{vci} \) saturation vapor pressure at \(T_{vci} \), pa

\(\rho_{vci} \) saturation vapor density at \(T_{vci} \), kg/m\(^3\)

\(\rho_{vci} \) saturation vapor density at \(T_{vci} \), kg/m\(^3\)

\(\rho_{vci} \) saturation vapor density at \(T_{vci} \), kg/m\(^3\)

\(\rho_{vci} \) saturation vapor density at \(T_{vci} \), kg/m\(^3\)

\(\rho_{vci} \) saturation vapor density at \(T_{vci} \), kg/m\(^3\)

\(\rho_{vci} \) saturation vapor density at \(T_{vci} \), kg/m\(^3\)

REFERENCES

