GFRP 積層板を用いた切削可能壁体の開発

鹿島建設(株) 正会員○吉田健太郎,正会員 鶴田 浩一,正会員 吉川 正芦森工業(株) 正会員 柴田 健一,正会員 糸久 智, 八木伊三郎

1. はじめに

近年、シールド掘削機が通過する立坑の壁体部に切削可能な新 素材を設置して直接発進・到達する工法を採用する例が増えてい る.新素材としては、炭素繊維に樹脂含浸させた CFRP(炭素繊 維強化プラスチック)補強材や硬質ウレタン樹脂を長繊維で強化 した部材等が多く用いられているが、コスト高や切削時の大割れ による配管等の閉塞等が課題となっていた.筆者らはこれらの課 題を解決するために、切削性が良好であり、コスト面でもメリッ トのある GFRP(ガラス繊維強化プラスチック)積層板を新たに 用いることを考案した.GFRP積層板は簡易に任意の形状に成形 可能であり、立坑の壁体ばかりでなく、シールドセグメントのよ うな曲率を持った部材への適用も可能である.本報告では、新し い切削可能壁体の適用性を確認するために実施した、部材性能試 験と切削実験結果について報告する.

2. 切削可能壁体の概要

新しい切削可能壁体は、ガラス短繊維含有の熱硬化樹脂シート とガラス長繊維の一方向ロービング材を図-1のように、交互に 積層して強度を高めた GFRP 積層板を中温・低圧で金型成形する ことにより中空矩形形状の部材としたものである.熱硬化樹脂シ ートにより、任意方向の基本強度を確保し、設計支間方向を長繊 維の一方向ロービング材で補強することで、経済的に部材の構造 性能を確保することができる.また、熱硬化樹脂シートはガラス 短繊維に不飽和ポリエステル樹脂を含浸させたもので切削性に優 れている.成形した部材の中空部には、モルタルやコンクリート 等を充填することで、形状保持効果を期待することも可能である. **表-1**に熱硬化樹脂シートの原料の基本物性を示す.

3. 性能確認試験

表-2に GFRP 積層版の圧縮試験の結果を示す. 試験体は, 厚さ 3.0mm の熱硬化樹脂シート 3 層と厚さ 0.75mm の一方向ロ ービング層 2 層を積層して成形した厚さ約 9mm (熱硬化成形後) の GFRP 積層板である. 実験から得られた圧縮 強さは,熱硬化樹脂シートと一方向ロービング 材といった異種材料を積層した FRP の理論上の 強度算定値とほぼ同等であることが確認できた.

次に中空矩形形状(360×360×3,800)に成 形した部材の曲げ試験の結果を示す. 熱硬化樹脂シート (ガラス短繊維含有)ー方向ロービング材 (ガラス長繊維)

図ー1 GFRP 板の積層構成図

表一1 材料物性

不飽和ポリエステル樹脂			
比重		$1.19 \sim 1.23$	
曲げ強さ	(N/mm ²)	$100 \sim 150$	
曲げ弾性率	(N/mm ²)	$3500 \sim 4900$	
引張強さ	(N/mm ²)	$65 \sim 75$	
圧縮強さ	(N/mm ²)	$1450 \sim 150$	
熱膨張率	(/°C)	$5.5 \sim 10 \times 10^{-6}$	
ガラス短繊維			
比重		2.54	
硬度	(Mohs)	6.5	
引張強さ	(N/mm ²)	$1000 \sim 2000$	
ヤング率	(N/mm ²)	73000	
最大伸度	(%)	$3\sim 4$	
熱膨張率	(/°C)	$5.0 imes 10^{-6}$	

表-2 GFRP 積層板の圧縮試験結果

試験体名	圧縮強さ (N/mm²)	压縮弹性率 (N/mm ²)
A1	197	16,635
A2	193	10,884
A3	179	12,405
平均值	190	13,308
理論値(計算値)	193	11,123
規格値	160	10,000

キーワード:シールド,発進到達,GFRP,熱硬化樹脂,静的載荷実験 連絡先 〒107-8502 東京都港区赤坂 6-5-30 鹿島建設㈱土木設計本部 TEL03-6229-6752 載荷は図-2に示す装置で行い,一度計算上の許容耐力ま で載荷後除荷し,その後破壊まで静的漸増載荷を実施した.

図-3に荷重と中央鉛直変位の関係を,図-4に荷重と圧縮ひずみの関係を示す.部材は,最大荷重775kNm(曲げモーメント484kNm)で支間中央鉛直変位70.2mmの時に,上側フランジの圧縮破壊により終局状態となった.

この時の部材の曲げモーメントから計算すると、上フラン ジの圧縮応力度は 166N/mm²、変位量より求まる弾性係数は E=16,000N/mm²となる.この値は、表-2に示す材料試験値 よりも若干低いが、これは中空矩形の部材形状による影響等 であると考えられるが、安全率等を考慮した規格値を確保し ていることから、平面保持を仮定して部材設計が可能である ことを確認した.

4. 切削実験

前述のように切削性能も非常に重要な要素であるため,実 大規模の部材の切削実験を実施して切削性を確認した.

切削実験は、掘削外径 ϕ 845mmの推進工事(泥水)の到 達部で行った.**写真-1**に実験状況を示す.切削試験体は、 載荷実験と同寸法の部材を3列横並びに合わせたものであり、 中空部には σ_{28} =18 N/mm²相当のモルタルを充填した.

切削時の推進速度は平均 3mm/min で,カッタートルクは 15~20kNm 程度と切削抵抗も上昇することなく切削できた

(写真-2). 切削片は,全断面掘削の先行ビットを配置す ることによって写真-3に示すとおり細かく切断され,掘進 機の面盤や排泥管・排泥ポンプ等を閉塞させるような大きな 切削片は確認されなかった.また,切削時の異常な騒音や振 動も認められなかった.

5. まとめ

シールド機の発進・到達部の壁体として、切削性が良好で あり、簡易に任意の形状に成形可能で、かつコスト面でもメ リットのある GFRP 積層板を用いた新たな部材の開発,検討 及びその効果の検証を行い以下のことを確認した.

①平面保持を仮定した部材性能の評価が可能である.②切削性能が良好である.

今後,矩形以外の断面形状や 任意の部材形状に成形できる特 徴を生かし,さらに充填モルタ ルを強度部材として評価できる ような合理的な構造・評価手法 の検討を進めていく予定である.

参考文献

1) (社) 強化プラスチック協会: FRP 構造設計便覧, 1994.9

2) (社) 強化プラスチック協会: FRP 構造強度設計の実際, 1984.10

図-4 荷重-圧縮ひずみ(上フランジ)

写真—1 切削実験状況

写真一3 部材切削片

切削完了後の部材

写直-2