アーチ凍土の力学的挙動について(その2) ーモデル実験結果とフレーム解析との比較-

(株)精研 正会員 〇森 保史* 北川 貴由*(株)精研 正会員 伊豆田 久雄**

1. はじめに

トンネルなどの数多くの構造物の変形や応力照査では、一般にフレーム(骨組み)解析が用いられている。アーチ凍土の モデル実験から得られた実験値¹⁾を、フレーム解析による計算値と比較検討した。このことにより、アーチ凍土の降伏荷重 や変形などを予測する際の、フレーム解析の妥当性を検証した。

2. 解析モデルと凍土の強度

端部の拘束条件を固定(水平及び鉛直変位せず、回転もしない)とし、載荷を4点等荷重として、フレーム解析(富士通エフ・アイ・ピー:FREMING Ver10)を用いて、アーチに生じるモーメント、軸力、変位を計算した。図1にフレーム解析のモデル図を示す。

解析で用いた粘土凍土(-12°C)の強度に関する物性値を**表1**に示す。曲 げ強度 σ max ,曲げ降伏強度 σ p は、圧密しない粘土凍土で曲げ試験を行 った過去の文献²⁾から引用した。一軸圧縮強度 σ 10 は、アーチ凍土と同様 に圧密せずに作製した円柱型供試体(ϕ 50 mm, H100 mm)を用いた試験から 決定した。降伏強度 σ y は σ 10 の 65%とした。文献³⁾にある値から判断しても、 今回の σ 10、 σ y は妥当な値であった。

図1 フレーム解析モデル

表1 凍土の強度

𝔄 𝑘⊥♥𝔅𝔅		(N/mm^2)
曲げ強度	$\sigma \max^{2)}$	5.71
曲げ降伏強度	$\sigma p^{2)}$	2.98
一軸圧縮強度	σ 10	4.52
一軸圧縮降伏強度	σγ	2.94

3. 実験結果と解析結果との比較

1)荷重W~鉛直変位 δv 曲線:フレーム解析を用いて、比例限界荷重Wp

時点までのW~ δv 曲線の勾配に一致する変形係数 E を求 めた。図 2 に例として、Aシリーズの実験で得たW~ δv 曲線 に、フレーム解析による勾配を示す。なお、平均変形係数は 750MN/m² であったが、文献⁴⁾の粘土凍土(-12°C)の変形係 数 E=500MN/m² に比べて少し大きい値であった。

2) 応力 \sigma 分布: 応力 \sigma in, \sigma out と軸力 N, モーメント M との間 には「\sigma in = N/A + M/Z····(1)」「\sigma out = N/A - M/Z···· (2)」が成り立つ(A:断面積, Z:断面係数)。また、これらより\sigma と M の関係は「M =1/2·(\sigma in-\sigma out)・Z···(3)」となる。この時、 M>0 ならば内に凸の曲げ、M<0 ならば外に凸の曲げとな る。

E=880 E=600 変形係数E:MN/m⁴ 700 / E=500 E=1010 600 500 Ê Ŷ 400 荷重W 300 200 Af-1 Af-2 100 As 0 0 -4 -8 δv(mm) -12 -16

図2 荷重W~頂部鉛直変位δv曲線(Aシリーズ)

荷重Wを、実験から得られているWpの平均値としたフレーム解析から求められた軸力,モーメントから(1),(2)式を用いて、 比例限界荷重Wp時にアーチ凍土内に発生する応力分布を求めた。図3に例として、Cシリーズ(Wp=70kN/m¹⁾)における 応力分布について、実験結果と併せて示す。 σ in 分布は「W型」、 σ out 分布は「M型」となり、実験から得られた応力の分布 形状¹⁾とほぼ一致した。また、頂部,端部では σ out が σ in よりも大きいことから、(3)式より、内に凸(正曲げ)のモーメントが発 生し、肩部では逆に σ in が σ out よりも大きいことから、外に凸(負曲げ)のモーメントが発生していることも分かった。

<キーワード> アーチ凍土、フレーム解析、モデル実験、変形挙動、凍結工法 連絡先 *〒112-0002 東京都文京区小石川 1-12-14(株)精研 東京支店 凍結本部 TEL 03-5689-2355 **〒542-0066 大阪市中央区瓦屋町 2-11-16(株)精研 凍結本部 TEL 06-6768-5039

-41-

6-021

3) 比例限界荷重Wp, 最大荷重Wmax: 実験から得られたWp, Wmax を、フレー ム解析結果と比較する。

フレーム解析では、図 3 からもわかる ように、端部外面(α =70°),肩部内面 (α =50°),頂部外面(α =0°)の3部位 で大きな圧縮応力が発生している。なお、 図中のフレーム解は、各部位を直線で 結んだものである。一方、実験において Wmax 後に引張クラックが目視観察され たのは、頂部内面の部位であった(ただ し、端部付近で圧縮降伏や破壊が起こ っていても粘土凍土では目視観察するこ

とは難しい)。したがって、以下のWp またはWmax を計算する部位は、これらの4箇所とした。

フレーム解析から求まる、アーチ凍土の各部位の応力が表1のσyまたは σpに達する荷重をWp、σmaxまたはσ10に達するWmaxとしている。Wp, Wmaxそれぞれにおける、実験値とフレーム解析値の比較を図4(a), (b)に示 す。ここで、図中にはフレーム解析で最も低い荷重(いずれかの部位の凍土 が降伏するときの荷重)を「〇」で示した。

Wp においては、頂部での引張降伏を除くと、フレーム解はいずれの部位 の降伏であっても、実験値とほぼ合っていた。従って、アーチ凍土の比例限 界(降伏)荷重を予測する際に、フレーム解析を用いることは妥当であること が分かった。一方、Wmax に関しては、最も低い荷重レベルのフレーム解は、 実験値よりも小さかった。この理由としては、Wp よりも大きなWでは部分的に、 凍土に塑性が起こるために、アーチ凍土内の応力分布が解析とは異なること なども考えられるが不明な点も多い。なお、フレーム解の方が実験値よりも小 さいので、フレーム解で最大荷重を予測することは安全側にあると考えられ る。

4. 終わりに

アーチ凍土のモデル実験から得られた実験値¹⁾とフレーム解との比較を行った。その結果、1) アーチ凍土の変形係数は文献値に比べると少し大きい値となった。2) アーチ凍土内の応力分布形状は、フレーム解は実験結果と 一致した。すなわち、モーメント分布のモードは、フレーム解析と実験で一致していることがわかった。また、3) フレーム解析から求まるアーチ凍土の比例限界荷重Wp は、実験結果とよく合っていた。以上のことから、フレーム解析を用いてアーチ凍土の比例限界(降伏)荷重や変形を予測することは妥当であることが検証された。

図 4(b) Wmax:フレーム解析と実験比較

文献:1)森保史ら:アーチ凍土の力学的挙動について(その1)−粘土凍土におけるモデル実験結果−,土木学会第59回年次学術 講演会,2004.2)伊豆田久雄ら:凍土の曲げ条件下における変形挙動と強度特性,雪氷,Vol.50,No.1,pp25~pp32,1988.3)高志 勤ら:均質な粘土凍土の一軸圧縮強度に関する実験的研究,土木学会論文報告集,No.315,pp83~93,1981.4)生頼孝博ら:析出氷 晶を含む凍土の一軸圧縮強度に関する実験的研究,雪氷,Vol.45,No.1,pp1~12,1983.