貨物ヤードのアスファルト舗装における走行試験 ~ その 3~

東亜道路工業(株)技術開発部	正会員	井上彰,阿部長門
日本貨物鉄道(株)保全部	正会員	三浦康夫,藤田健一
(財)鉄道総合技術研究所	正会員	関根悦夫,桃谷尚嗣

1. はじめに

神戸貨物ターミナル駅構内において,12ft フォーク リフトを基準としたフォークリフトやトラック荷重に よる舗装内部の応力,およびひずみを測定し,設計方 法と層厚に関する検証を行うための試験を行った.

本稿では,静止状態から得られるひずみ(実測値) と, BISAR を用いて求めたひずみ(計算値)の比較に 関してまとめた.

2. 試験概要

舗装断面と基層下面とアスファルト安定処理路盤下 面に埋設した計測機器に関しては,参考文献 1)を参照 されたい.走行試験では,各機種(12ft フォークリフ ト,トップリフター,T-25 トラック)において,載荷 荷重の有無を考慮した条件とした.図-1に示すように, 起点側から試験区間内に入り,前輪中心を,基層面で の測定の場合はゲージ No.16,アスファルト安定処理路 盤での測定の場合はゲージ No.31 を目標位置として停 止させた.ひずみのデータに収束がみられたのち,終 点方向に走行していく.これを3回行い,データを収 集した.

3. 静止試験結果

静止試験を行った際に、目標停止位置に停止後、ひ ずみが一定の値に収束したときのデータを用いて距離 とひずみの関係を求めた. 収束したと思われる時間は 測定したデータから判断した.その結果の一例として, 図-2 に基層面における全機種での試験結果を示し,図 -3 にアスファルト安定処理路盤における全機種での試 験結果を示した.距離は着発4番線から最も離れたひ ずみゲージ No.1 を 0mm とし, 最も近いひずみゲージ No.10 を 6000mm とした.従って,目標停止位置は 3000mmである 図-2から 目標停止位置である 3000mm 付近において大きなひずみの値が測定された.コンテ ナの有無によってピーク値が測定された距離にずれが

キーワード:	ひずみ , 土圧 , BISAR
〒300 - 2622	茨城県つくば市要 315 - 126
〒102 - 0072	東京都千代田区飯田橋 3-13-1
〒185 - 8540	東京都国分寺市光町 2 - 8 - 38

基層面の横断方向の距離とひずみの関係 図-2

図-3 アスファルト安定処理路盤面の横断方向 の距離とひずみの関係

TEL029 - 877 - 4150	FAX029 - 877 - 4151
TEL03 - 3239 - 9164	FAX03 - 3239 - 9160
TEL042 - 573 - 7276	FAX042 - 573 - 7413

生じているのは,目標とした停止位 置から多少離れて停止してしまった ことが要因として挙げられる.図-3 では,ピークの山がコンテナの有無 に関わらず2つ生じているが,これ はダブルタイヤの影響と考えられる. 4. 実測値と計算値の比較

BISAR を用いて 12ft フォークリフ トとトップリフターを用いて走行試 験を行ったときの,基層・アスファ ルト安定処理路盤の両下面のひずみ と,土圧計を埋設した深さ 180,380, 830mm での応力を求めた.その結果 と計算に使用した表層で行った FWD 試験から求めた各層の弾性係数を表 -1 に示す.

BISAR から求めたひずみ(計算値) と静止状態から得られたひずみ(実 測値)の関係の横断方向(X 方向) の一例を図-5 と図-6 に示す.ここで は,目標停止位置であるひずみゲー ジ No.37 の埋設してある地点を 0mm として,着発 4 番線方向に距離を取 っている.図-5 はアスファルト安定 処理路盤面での 12ft フォークリフト を用いた静止試験結果から得られた ひずみ(実測値)と,BISAR から計 算されたひずみ(計算値)の比較で ある.図-6 はトップリフターでの同 様の比較である.

図-5 の 12ft フォークリフトの結果 では,コンテナありの実測値のひず みと計算値のひずみにおいて,横断 方向の位置により圧縮と引張りが逆 になったが,それぞれのピーク値は, 実測値の方が計算値より小さかった. 図-6 のトップリフターの結果では, コンテナありの実測値において,

表-1 BISAR による計算結果(12ft フォークリフト)

試験条件	= 材料名		FW 弾 (Dによる 性係数 MPa)	試験時 温度 ()	温度補正 弾性係数	引張ひずみ X方向 (×10 ⁻⁶)	引張ひずみ Y方向 (×10 ⁻⁶)	鉛直応力 (MPa)
*****	密粒	立度As(13)		5500	19.5	5600	-	-	-
載何何重 なし	粗粒	度As(20)	4900		19.5	5000	-14.43	11.29	-0.7063
	As₹	F定処理	4400		14.5	5600	10.85	58.79	-0.0775
井井井手	密粒	[度As(13)		5500	17.9	6000	-	-	-
載何何里 あり	粗粒	l度As(20)		4900	17.9	5400	-19.26	28.46	-0.2398
	As₹	安定処理		4400	14.6	5500	41.11	129.7	-0.1829
					_				
材料		FWDに。 弾性係 (MPa)	kる 数)	層厚 (mm)	試験条	土圧計 生設深さ (mm)	引張ひずみ X方向 (×10 ⁻⁶)	引張ひずみ Y方向 (×10 ⁻⁶)	鉛直応力 (kPa)
密粒度As(13)		5500		50		100	10.00	50.70	77.510
粗粒度As(20)		4900		50	載荷荷	■ 180	10.85	58.79	-//.519
As安定処理		4400		80 73		380	35.58	49.63	-39.024
百生CAE敗般		710		200		830	23.49	25.41	-12.851
サエしれと昭置		710		200	載荷荷電	180 180	41.11	129.7	-182.858
路床仪艮		350		450	=	= 380	83.27	112.6	-89.663
路床		230		-	05.5	830	54.78	59.14	-29.970

図-5 12ft フォークリフトによる横断方向の 実測ひずみと計算ひずみの比較

実測ひずみと計算ひずみの比較

0mm 付近のグラフの傾向が計算値と多少異なっていたが,距離による圧縮と引張りの傾向は類似した傾向を示している.この結果においても,実測値のひずみの方が計算値のひずみより小さい値となっている. [参考文献] 1)三浦康夫ほか:貨物ヤードのアスファルト舗装における走行試験~その1~,土木学会第59回年次学術講演会,第 部門,2004.9.