繊維補強コンクリートを用いた RC 橋脚の変形性能向上に関する検討

九州工業大学	学生会員	福井梨恵	九州工業大学	正会員	幸左賢二
九州工業大学	学生会員	森・暁一	九州工業大学	学生会員	阿部弘典

1. はじめに

高じん性の繊維補強コンクリートは, RC 橋脚の 変形性能向上に有効な材料として期待されているが, その効果について定量的な評価は行われていない. そこで,既往の評価式をもとに解析的に繊維補強コ ンクリート柱部材の変形性能評価を行い,さらに正 負交番載荷実験によってその効果の評価を行った.

2. 検討供試体

図-1 に検討供試体諸元を示す .No.1 供試体は一般 的な単柱式橋脚を 1/8 スケールでモデル化したもの である.パラメータは,コンクリートの種類,帯鉄 筋量,鉄筋強度,断面形状とし,繊維補強コンクリ ートは,現在最も実用に供されている鋼繊維補強コ ンクリート(以下,SFRC)と,SFRC の一種で超高強 度の Ductal を検討対象とした.

※全供試体ともに H×B=400×400[mm], せん断スパン1400[mm], せん断スパン比 4.0, 主鉄筋比 ρ_i=1.43[%]
図-1 検討供試体諸元

3. 既往の評価式による変形性能評価

変形性能の評価は,道路橋示方書 耐震設計編に従って行った. ただし,図-2 に示すように,SFRC の応力度-ひずみ関係(以下,

関係)には土木学会提案式,Ductalの - 関係には既往の研究から 得られた実験値を用いた.表-1 に終局耐力,終局変位およびじん性 率の計算結果を示す.SFRC および Ductal を全断面に用いた供試体 では,帯鉄筋量に関わらず終局変位が非常に大きく,じん性率は SFRC で標準供試体の約2倍,Ductal で約7倍になった.Ductal のほ うが SFRC より終局ひずみが小さいにも関わらず終局変位が3倍近 く大きいのは,Ductal が高強度であるため中立軸が圧縮側に寄り, 終局曲率が非常に大きく計算されるためである.

SFRC および Ductal を主鉄筋の周囲のみに用いた供試体は,全断面 に用いた場合と同程度のじん性率を有する結果となり,Ductal と高強 度鉄筋を用いた供試体は,通常鉄筋を用いた場合より若干じん性率は 低いが,非常に大きな耐力を有する結果となった.

4.正負交番載荷実験

検討供試体 10 体のうち,まず SFRC の実際の効果を評価するため,No.2 供試体に対して正負交番載荷実験を行った.図-3 に供試体形状を示す.SFRC には,両端フック付の鋼繊維を体積混入率で1%混入したものを用いた.載荷は,SFRC および鉄筋の実強度を用いた計算により求まった初降伏荷重149[kN]まで荷重制御,それ以降は初降伏

キーワード	繊維補強コンクリート,応力度-ひずみ関係,正負交番載荷,翌	变形性能
連絡先	〒804-8550 福岡県北九州市戸畑区仙水町 1-1 建設社会工学棟 3F	Tel/Fax 093-884-3123

表-1 計算結果

		No.1	No.2	No.3	No.4	No.5
Pu	[kN]	144	144	147	141	144
δu	[mm]	32.8	67.7	208.7	18.1	55.7
μ		4.9	9.9	34.2	1.0	8.6
		No.6	No.7	No.8	No.3-2	No.6-2
Pu	[kN]	147	144	147	333	333
δu	[mm]	205.9	67.7	208.4	90.5	87.7
u		33.8	9.9	36.5	30.4	29.4

変位 6.7[mm]の整数倍を正負各 1 回ずつ変位制御で行った.また, 供試体の耐力が初降伏荷重 149[kN]まで低下した点を終局と定義し, 載荷は載荷点での変位の測定が限界に達する 14 √0 まで行った.

図-4 に 14 _{y0}載荷終了後のひび割れ図を示す.No.2 供試体は, 25[kN]載荷時に初期ひび割れが発生したが,149[kN]載荷まではほ とんどひび割れの進展はなかった.149[kN]載荷以降急激にひび割 れが多数発生し,10 y0 載荷時から基部隅角部のコンクリートが 剥落し始めたが,ひび割れ面では鋼繊維がコンクリートを繋ぎとめ ている様子が確認された.最終的には,図-4 に示すように,供試 体全体に曲げひび割れが卓越し,基部でのコンクリート剥落も少な い結果となった.このように,SFRCは,現在ではコンクリートの 欠落防止を目的とした使用が一般的であるが,地震時等に大変形を 受ける柱部材においてもかぶりコンクリートの剥落防止や鉄筋座 屈の抑制に有効であると考えられる.

図-5 に No.2 供試体の水平力-水平変位関係(以下, P- 関係)の実 験結果を示す.本研究では,別途圧縮試験を実施し,SFRC および 通常コンクリートの実際の - 関係を計測した.その - 関係を 用いて求めた計算上の No.1, No.2 供試体の P- 関係を図-5 に併せ て示す.実際の P- 関係の履歴が不均等になっているが,これは 載荷装置に表示される変位の値と変位計の測定値に誤差が生じた ためである.

図-5 に示すように, No.2 供試体は 125[kN]で初降伏に至り, 6 y0 載荷時に最大耐力 194[kN]を迎え, その後 10 y0 載荷まで約 185[kN]程の耐力を保持していた.11 y0 載荷時に耐力が降伏荷重 を下回ったが,14 y0 載荷するまで徐々に耐力が低下する結果とな った.初降伏時および終局時の変位はそれぞれ 10.5[mm],82.4[mm] であり,じん性率はµexp=7.8 であった.実際の - 関係を用いた 計算上の No.2 供試体の初降伏変位は 7.2[mm] 終局変位は 49.9[mm], じん性率は 6.0 となり,実験結果は計算値を上回る結果となった. また,通常コンクリートを用いた No.1 供試体では,計算上の終局 変位が 33[mm]であり,じん性率は 4.4 という結果になった.よっ て,SFRC を用いた No.2 供試体は通常コンクリートを用いた No.1 供試体に比べて終局変位が計算値で 1.5 倍,実験値で 2.5 倍となり, 変形性能の向上に非常に有効であると考えられる.

図-4 14 い載荷終了後の損傷状況

図-5 水平力-水平变位関係

5. まとめ

本研究から得られた知見を以下にまとめる.

(1)帯鉄筋量に関わらず, SFRC を用いた柱部材の計算上の変形性能は通常コンクリート柱部材の約2倍, Ductal を 用いた供試体では約7倍となり,繊維補強コンクリートは変形性能の向上に有効と考えられる.

(2)SFRC を用いた No.2 供試体の実際の終局変位は,通常コンクリートを用いた No.1 供試体の 2.5 倍になり, SFRC は変形性能の向上に有効である.

参考文献: 益田彰久ら; 鋼繊維補強コンクリート柱の交番載荷試験,コンクリート工学年次論文報告集, Vol.19, No.2, 1997