せん断破壊型軽量コンクリート RC 梁の耐衝撃性

ドーピー建設工業(株)	正 員	○ 竹本	伸一	室蘭工業大学	フェロー	岸	徳光
三井住友建設 (株)	フェロー	三上	浩	室蘭工業大学	フェロー	松岡	健一

1. はじめに

本研究では,軽量コンクリートを用いたせん断破壊型 RC 梁の耐衝撃性に及ぼすせん断補強筋量の影響を検討することを目的に,せん断補強筋量の異なる3種類の RC 梁(全14体)に関する重錘落下衝撃実験を実施した.

2. 実験概要

図-1には、本実験に用いた試験体の形状寸法および配筋状況を示している. せん断補強筋には D6 を用いている. 軽量コンクリートの力学的特性値としては、比重 1.83、圧縮強度 49.4 MPa、引張強度 2.16 MPa、弾性係数 21.2 GPa、ポ アソン比 0.23 である. 表-1には、各試験体の一覧を示している. 試験体名は軽量コンクリートを表す LW とせん断補

強筋の配置間隔 (mm) を組み合わせて示している.表 中の計算静的曲げ耐力 P_{usc} および静的せん断耐力 V_{usc} は,示方書に基づき算定している.なお, V_{usc} 値は示 方書に基づき計算値の 70% に低減して評価している. また,せん断余裕度 α はこの V_{usc} を P_{usc} で除した値で ある.実験は,跳ね上がり防止用治具付の支点治具上 に設置した RC 梁のスパン中央部に所定の高さから 400 kg 重錘を一度だけ自由落下させる単一載荷により 行っている.本実験では終局の定義を梁側面に明瞭な アーチ状のひび割れが発生し,梁が著しく損傷する場 合とした.測定項目は,重錘衝撃力 P, 合支点反力 R(以後,支点反力) および載荷点変位 δ (以後,変位) の各種応答波形である.また,実験終了後にはひび割 れ状況を記録している.

3. 実験結果および考察

3.1 重錘衝撃力,支点反力および変位波形

図-2には、各RC梁の重錘衝撃力P,支点反力R および変位 δ に関する各種応答波形を示している。図 より、重錘衝撃力波形Pは各梁とも衝突速度Vにか かわらず衝撃初期に継続時間が2ms程度の第1波と その後の振幅が小さく継続時間の長い第2波からなる 分布性状を呈している。しかしながら、LW0梁のV= 4.5 m/s の場合には、第2波目の衝撃力波形が発生して いない。これは、第1波目の時点で、梁が著しく損傷 したためと考えられる。支点反力波形Rは、LW0梁 の場合には衝撃初期に三角形波の分布性状を示してい る。それに対してLW170/85梁の場合には、継続時 間が約15 ms程度の三角形波と周期が2.5 ms程度の波 形が合成された分布性状を示している。変位波形 δ は

図-1 試験体概要図 (LW85)

表-1 試験体の一覧

試験 体名	せん断	計算静的	計算静的	せん断	衝空這度	
	補強筋比	せん断耐力	曲げ耐力	余裕度	側矢述及	
	P_{s} (%)	V _{usc} (kN)	P_{usc} (kN)	α	<i>V</i> (m/s)	
LW0	0	135		0.43	3.75, 4, 4.25, 4.5	
LW170	0.16	232	312	0.74	5.5, 6, 6.25, 6.5, 6.75	
LW85	0.31	329		1.05	6.5, 7.5, 8.5, 9.5, 10.5	

キーワード:RC梁, 軽量コンクリート, せん断補強筋, 重錘落下衝撃実験, 耐衝撃性 連絡先:〒060-0001 札幌市中央区北1西6ドーピー建設工業(株) TEL 011-221-1571 FAX 011-222-5527

試験体名	衝撃実験		静毒	よ! 断斌強笛の	
	最大 せん断補強筋の		実測静的	せん断補強筋の	この阿福强加の 耐力 い
	支点反力	分担耐力	せん断耐力	分担耐力	101 /J /L
	R_{ud} (kN)	R_{sd} (kN)	P_{us} (kN)	P_{sd} (kN)	R_{sd} / P_{sd}
LW0-4.5	469	-	182	-	-
LW170-6.5	791	322	333	151	2.14
LW85-9.5	1050	581	396	215	2.71

各梁とも正弦減衰波状の波形性状を示している.LW0 梁の波形性状をせん断 補強筋を配筋しているLW170/85 梁と比較すると,LW170/85 梁の固有振 動周期はLW0 梁のそれより短く,せん断補強筋を配筋することによりせん 断剛性が向上していることが分かる.

(c) LW85 梁

図-4 ひび割れ分布性状

3.2 支点反カー変位履歴曲線

図-3には、各梁の支点反力-変位履歴曲線を示している.LW0梁のV= 4.25 m/s の場合には、せん断破壊型特有の三角形状分布を示している。しか しながら、V=4.5 m/s では三角形状の分布を示すものの再度載荷状態となり、 それに対応して変位も増加している。これは、入力エネルギーが破壊エネル

ギーよりも多いため,鉄筋のみが抵抗していることを暗示している.LW170 梁の場合には,V=6.5 m/s において三角 形状の分布を示すものの,初期剛性と同様の勾配で除荷され,やがて原点近傍まで復元している.LW85 梁の場合に は,V=8.5,9.5 m/s において,衝撃初期に三角形の分布を示すものの,時間とともに平行四辺形的な分布性状を呈して おり,曲げ破壊型の傾向を示していることが分かる.

3.3 ひび割れ分布性状

図-4には、実験終了後におけるひび割れ分布性状を示している.LW0梁のV=4.25 m/s の場合には、載荷点から 支点部へと進展するアーチ状のひび割れが発生している.しかしながら、V=4.5 m/s では、載荷点近傍と下縁かぶり 部でコンクリートの剥落が見られ、脆性的なせん断破壊に至っていることが分かる.一方、LW170/85の場合には、 アーチ状および斜めひび割れが発生しているものの、ひび割れはLW0梁に比べて梁全体に分散していることが分か る.また、せん断補強筋量の増加とともにひび割れの間隔も小さく、主鉄筋に沿った割裂ひび割れも抑制されている ことから、衝撃力に対してせん断補強筋のトラス効果が発揮され、梁全体で抵抗していることが分かる.

3.4 終局時におけるせん断補強筋の耐力比

表-2には、終局衝突速度における最大支点反力および別途行った静載荷実験による実測静的せん断耐力を示している. なお、LW170/85 梁に関してはせん断補強筋による分担耐力を求め、それらの比をせん断補強筋による耐力寄与分として示している. 表より、動的倍率は2以上であり、せん断補強筋量の増加とともに増大していることが分かる. 4. まとめ

1) せん断補強筋を増加させることにより,梁の破壊性状をせん断破壊型から曲げ破壊型に移行することができる.
2) 終局時におけるせん断補強筋による耐力分担分の動的倍率は2以上であり,補強筋量の増大とともに大きくなる.