## RC 柱部材の終局曲率と終局変位に対する検討

| 武蔵工業大学 | 学生員 | 牧原 | 成樹 |
|--------|-----|----|----|
| 武蔵工業大学 | 学生員 | 依田 | 宏之 |
| 武蔵工業大学 | 正会員 | 吉川 | 弘道 |

1.はじめに

鉄筋コンクリート(以下, RC)柱部材は,大規模な地震発生時に安定 した耐力を保持し, 脆性的なせん断破壊を回避することが重要である. また高靭性に設計することが望ましい.本研究では靭性評価式で用い られる終局変位に着目し,変形性能を示す曲げ変形量,せん断変形量 を分離する手法を用い,本学で行った実験結果と比較を行った.

2. 変形成分の実験的分離<sup>1)</sup>

RC 柱部材に水平荷重が作用すると、せん断力と曲げモーメントが発 生する(図1参照).本実験では、試験体を4区間に分割しそれぞれの 区間に取り付けられた変位計から曲げ変形 flexとせん断変形 shrを計 測した.

曲げ変形: $\delta_{flex} = \sum \phi_i (H - y_i) \cdot h$ せん断変形: $\delta_{shr} = \sum \gamma_i \cdot h$ 載荷点変位: $\delta_{total} = \delta_{flex} + \delta_{shr}$ 

total offex of shr

 $\phi_i: i番目の区間における平 均曲率, H: せん断スパン長$  $<math>y_i: 基部から i番目の区間の中心点ま での距離$  $<math>\gamma_i: i番目の区間におけるせ ん断ひずみ, h: 区間長 = 250mm$ ここで, 各区間での曲率 iとせん断ひずみ iは, 6

基の変位計から,図2に示すような幾何学量を用い て次式により算出できる.

曲率:  $\phi = (\Delta h_r - \Delta h_l) / (L \cdot h)$ せん断ひずみ:  $\gamma = \Delta d_{shr} / \cos R \cdot h$   $\Delta h_r$ : 鉛直方向における圧縮力による変形  $\Delta h_l$ : 鉛直方向における引張力による変形 L:水平方向の長さ, h: 鉛直方向の長さ  $\Delta d_{shr}$ : 斜め方向の変形, R:水平方向に対する斜め角度

3.実験概要と試験体諸元

断面 320 × 320(mm), せん断スパン長 1200mm, せん断スパン 比 4.05 で実構造物の 40%を有する試験体を用いた. 図 3 に試 験体図,表1に試験体を示す.



## 図1 変位計取付け位置と計測区間における内力分布図





## (a)曲げ変形の場合

(b) せん断変形の場合

図2 変位計による曲率とせん断ひずみの算定



|                  |           |         | 表1 註     | 巅体諸元 |        | 図 3      | 試験体図                                         | ]        |
|------------------|-----------|---------|----------|------|--------|----------|----------------------------------------------|----------|
|                  | 断面形状      | せん断スパン長 | ᆍᇉᅶᆺᄣᆋᆂᄔ | 軸力   | とうである  | 軸方       | 向鉄筋                                          | コンクリート   |
| <u> 訊</u> 駛144 名 | (mm)      | (mm)    | 囲けせん断耐力に | (kN) | 深り返し回数 | <u> </u> | <u> 降                                   </u> | <u> </u> |
| S12-1-3          | ()        | ()      | 1.0      | 1    |        | ()       | ()                                           | 20.38    |
| S12-3-3          |           |         | Ι.Ζ      | 3    | 3      |          |                                              | 24.76    |
| S15-0-3          | 320 × 320 | 1200    |          | 0    | , J    | 12.7     | 402.5                                        | 24.1     |
| S15-1-3          |           |         | 1.5      | 1    |        |          |                                              | 20.34    |
| S15-1-10         |           |         |          | 1    | 10     |          |                                              | 24.24    |

h

Key Word : RC 柱部材, 終局曲率, 終局变位

連絡先 : 〒158-8557 東京都世田谷区玉堤 1-28-1 武蔵工業大学 都市基盤工学科 構造材料工学研究室 TEL 03-3703-3111(内線:3441)FAX:03-5707-2125 4.終局曲率 "の考察

まず,終局時の曲率 "の算定法を考察する.実験値は, 終局時における基部(区間1)の曲率を用い,一方,計算値と して,石橋らによる提案式(1)<sup>2)</sup>,および終局曲げ理論式(2)を 用いた.

 $\phi p = 0.00005 \ln(p_w) + 0.00018$ 

 $\phi_u = \frac{\varepsilon_{cu}}{C}$ 

 $\phi_{P_u}$ :終局変位時の塑性ヒン ジ区間の平均終局曲率 (1/mm)  $p_w$ :帯鉄筋比(%), $\varepsilon_{cu}$ :終局圧縮ひずみ, $C_u$ :中立軸位置

以上をまとめ,図4および表2に整理した.この結果より, "算定式 に石橋らによる提案式を用いた.

(1)

(2)

5. 載荷点変位(曲げ成分)の算出方法

変位計測システムの測定精度を確認するため,図5にまとめた.こ れは,縦軸:変形成分の実験的分離にて示した区間ごとの変形成分 の合計量,横軸:柱頭(載荷点)位置での変位計による測定値である が,両者はほぼ合致し(±3.2%),十分な実験精度を確認することが できた.

次に,曲げ成分のみを対象とした載荷点変位の算定式として,以 下を採用する.

 $\delta_u = \delta_y + (\phi_u - \phi_y) L_p (H - L_p / 2)$ (3)

 $\delta_y$ :降伏変位,  $\phi_u$ :終局変位,  $\phi_y$ :降伏変位, H:載荷点位置

ここで降伏曲率  $_{\nu}$ は,従来の曲げ理論(RC 断面弾性解析)を 適用し,終局曲率  $_{\nu}$ は前述の石橋らによる  $_{\mu\nu}$ (式(1))をそのま ま用いる.また,塑性ヒンジ長に関しては,鉄筋の直径  $d_b$ と軸方 向鉄筋の降伏強度 $f_{\nu}$ を考慮している Priestley の式(4)<sup>3)</sup>を用いた. 以下に各算定式を示した.

 $L_p = 0.08L + 0.022d_b f_y \tag{4}$ 

このような準備のもと、曲げ成分のみに着目した載荷点変位に ついて検討し、図6を得た.ここでは、表1に示した5試験体に 対して、解析値(縦軸)として先述の式(3)を用い、実験値(横軸) として全体変形 からせん断成分を除去している値を用いた(

- *shr*). 両者は極めてよく合致し,本文で提案した手法の有効 性を示唆するものである.

ただし,終局曲率 "に関して,解析値と実験結果が合致しないもの(図4での検討)も含まれており,さらに広範囲の実験値との比較検討が必要である.

【参考文献】

[1]小林真樹:繰返し大変形を受ける RC 単柱のせん断劣化と靭性評価,武蔵工業大学修士学 位論文,2002.3

[2] 石橋忠良,津吉毅,小林薫,吉田徹,海原卓也:大変形領域の交番載荷を受ける RC 脚柱の変形性能算定に関する研究,土木学会論文集 No.711/V-56,pp45-57,2002.8

[3] Priestley , M.J.N. , Seible , F.and Calvi , G.M. : Seismic Design and Retrofit of Bridges , A Wiley-Interscience Publication , 1996



表2 測定および解析結果

| 試験体名     |   | 区間測定値     | 解析值      |
|----------|---|-----------|----------|
| S12-1-3  | у | 1.159E-05 | 1.13E-05 |
|          | u | 5.687E-05 | 3.93E-05 |
| S12-3-3  | у | 1.381E-05 | 1.19E-05 |
|          | u | 3.98E-05  | 3.93E-05 |
| S15-0-3  | у | 1.319E-05 | 1.05E-05 |
|          | u | 8.399E-05 | 9.43E-05 |
| S15-1-3  | у | 1.185E-05 | 1.13E-05 |
|          | u | 7.862E-05 | 9.43E-05 |
| S15-1-10 | у | 1.363E-05 | 1.11E-05 |
|          | u | 6.207E-05 | 9.43E-05 |

