高強度コンクリートの自己収縮が RC はりのせん断特性に及ぼす影響

広島大学大学院 学生会員 牛尾 亮太 極東工業株式会社 正会員 河金 甲 広島大学大学院 正会員 丸山一平 広島大学大学院 フェロー会員 佐藤 良一

1.背景・目的

近年,構造物の断面縮小や耐久性の向上が期待できる高強度コンクリートへの関心が高まり,せん断特性に関する研究も活発に行われている。筆者らは高強度コンクリートの自己収縮がRC部材せん断挙動に及ぼす影響の観点から検討し,せん断補強筋のない場合には大きな影響は無い,ある場合にはせん断補強筋の降伏までの範囲ではコンクリートのせん断抵抗が低下することを明らかにしている。前者ははりの有効高さが250mmと大きくないため,ひび割れの局所化に差が見られないことが原因の一つと考えた。そこで,本研究では有効高さを500mmとしたせん断補強筋のないRCはりのせん断特性に及ぼす収縮の影響を検討する。

2.実験概要

使用したコンクリートは、水結合材比が23%で、普通ポルトランドセメントを用いた自己収縮の大きいコンクリート(記号 HAS:High Autogenous Shrinkage)と高ビーライト系セメント、収縮低減剤、膨張材を併用し、自己収縮を低減させたコンクリート(記号 LAS:Low Autogenous Shrinkage)

図-1 試験体,載荷試験概要

であり、また、両配合ともにセメント内割り 10%のシリカヒュームを用いた。RC 供試体の寸法および、載荷方法の概要を図-1 に示す。 養生は載荷直前まで封緘養生を行い、型枠からの拘束を極力排除するため、底面にテフロンシート、側面にはビニールシートを貼付した。

3.実験結果

表-1 に試験結果一覧を示す。斜めひび割れ発生荷重は平均でLASの方が約 5%大きくなった。計算値は高強度高収縮を対象とした藤田らが提案している式³⁾を用いた。

	供試体名	コンクリート材料物性					実験値				計算值			
配合		圧縮強度	ヤング係数	引張強度	破壊エネルギー	特性長さ	下縁応力	斜めひび割	別れ発生時	終周		藤田	1五	破壊モード
		f _c	E _C	f _t	Gf	lch	С	Vc,mea	c,mea	Vu,mea	u,mea	Vc,cal	c,cal	
		(N/mm^2)	(kN/mm ²)	(N/mm^2)	(N/mm)	(mm)	(N/mm ²)	(kN)	(N/mm ²)	(kN)	(N/mm^2)	(kN)	(kN)	
	HAS-1	124.0	48.8	7.1	0.206	191	1.6	116.0	1.55	116.0	1.55	76.0	1.01	斜め引張破壊
HAS	HAS-2	121.2	49.9	7.0	0.202	181	1.7	114.0	1.52	114.0	1.52	76.9	1.03	斜め引張破壊
	HAS-3	128.0	49.1	7.3	0.226	253	1.7	113.3	1.51	126.5	1.69	74.8	1.00	斜め引張破壊
	LAS-1	119.7	49.8	7.1	0.247	313	0.3	116.2	1.55	137.1	1.83 ^{注)}	77.3	1.03	せん断圧縮破壊
LAS	LAS-2	120.8	48.9	7.2	0.253	202	0.0	120.1	1.60	135.2	1.80 ^{注)}	77.0	1.03	せん断圧縮破壊
	LAS-3	117.1	49.8	7.0	0.237	173	0.2	130.6	1.74	142.0	1.89 ^{注)}	78.2	1.04	せん断圧縮破壊

表-1 試験結果一覧

注) LASについては斜めひび割れ発生後タイドアーチ的機構を形成し引張鉄筋が降伏したため参考値とする

3.1 荷重 - たわみ関係

図-2 に載荷点の荷重-たわみ関係を示す。HAS は斜めひび割れ発生と同時に破壊したのに対し,LAS は引張鉄筋降伏後に破壊し,たわみ性状に大きな差が認められた。

3.2 ひび割れ性状

図-3に HAS,LAS のひび割れ図の一例を示す。この図に示されているように,HAS の場合大きなひび割れが 1 本生じて破壊したのに対し,LAS の場合は大きなひび割れが 2 本生じて破壊した。これらの破壊形態は,同一の配合においていずれも生じた。

150 (2) (3) (4) (5) (10)

図-2 荷重-たわみ関係

キーワード:高強度コンクリート,自己収縮,寸法効果

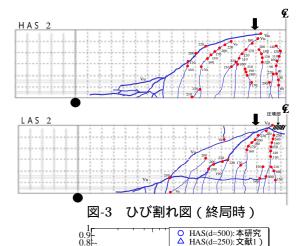
連絡先:〒739-8527 広島県東広島市鏡山 1-4-1 広島大学大学院工学研究科構造材料工学研究室

3.3 寸法効果

Gustafsson⁴らは破壊力学的な観点から特性長さを用いて寸法効 果の検討を行っている。本研究でも日本コンクリート工学協会が 提案している「プレーンコンクリートの破壊エネルギー試験法 (案)」5と同様の手法で求めた破壊エネルギーを用いて斜めひび 割れ発生強度に及ぼす寸法の影響を検討した。後述の図-4 に示す 斜めひび割れ発生強度には,文献1),3)のデータを追加している。文献 1)では,破壊エネルギー試験を行っていないため,本研究の破壊エネ ルギーの平均値を用い特性長さを求めた。特性長さ5は以下の式(1) で求めた。

$$l_{ch} = EcG_f / ft^2 \cdot \cdots \cdot (1)$$

lch:特性長さ Ec:ヤング係数 ft:引張強度 Gf:破壊エネルギー


図-4 に寸法効果の検討結果を,表-2 に相関係数を示す。図-4 の上図はHAS 与 について、下図はLASについて最小二乗法を用い回帰したものである。 高強度 コンクリートの場合,せん断強度は有効高さの-1/2 乗に比例するという報告3) がされている。HASの相関係数について、せん断強度は有効高さの-1/2 乗が最 も高い値となり、LASの場合は-1/3 乗が最も高かった。


上記の結果より、LASについてはデータ数が十分ではなく、また文献¹⁾の破壊 エネルギーには本研究の破壊エネルギーの平均値を用いているが,自己収縮 を低減することにより、寸法効果が鈍くなる可能性が考えられる。 文献 $^{1)}$ に対 ${}_{\S}$ して仮定した破壊エネルギーが適切でないとしても,図-4 上図中の四角で囲 んだ本研究と文献 3 データを比較すると,HASの c/ftの平均値は 0.199, LASの c/ftの平均値は0.229となり、d/lchが大きい範囲で、自己収縮の影響が見ら れた。

4.結論

- 有効高さを 500mm としたせん断補強筋のない RC はりのせん断破壊形 態に自己収縮の影響が認められた。すなわち,自己収縮の大きい場合(は
 - リ下縁の自己収縮応力およそ 1.7N/mm²,引張鉄筋比 1.53%)は斜め引張 破壊し,自己収縮の小さい場合(はり下縁の自己収縮応力およそ 0.2N/mm² ,引張鉄筋比 1.53%)は引張鉄筋降伏 後せん断圧縮破壊した。
- 自己収縮が小さい場合,自己収縮が大きい場合と比較して,斜めひび割れ発生荷重は約5%増加した。
- 自己収縮が小さいと寸法効果が鈍くなる可能性がある。ただし,さらにデータを増やし検討する必要がある。

- 1) 伊藤友司:高強度コンクリートを用いた RC はりのせん断挙動と自己収縮に着目した評価,2000 年度広島大学 修士論文
- 2) 児玉友和:自己収縮を考慮した RC はりのせん断補強筋応力評価の考え方について,土木学会第 58 回年次学術 講演会概要集,V-283,pp.565-566,2002.9
- 3) 藤田学ほか:高強度コンクリートを用いた RC はりのせん断強度と寸法効果,土木学会論文 集,No.711,V-56,pp.161-172,2002.8
- 4) Gustafsson, P.J. and Hillerborg, A.: Sensitivity in shear strength of Longitudinally Reinforced Concrete Beams to Fracture Energy of Concrete, ACI Structual Journal, May-June, pp.286-294, 1988
- 5) (社)日本コンクリート工学協会:コンクリートの破壊特性の試験方法に関する調査研究委員会報告書,2001

LAS 0.2

0.1

d/lch 図-4 寸法効果の検討

表-2 相関係数一覧

		-1/4乗則	-1/3乗則	-1/2乗則
	HAS	0.674	0.733	0.794
I	LAS	0.893	0.945	0.920