3次元ガラス織物プレートを埋設型枠として用いた RC はりの曲げ疲労特性

立命館大学 COE 推進機構 正会員〇井上 真澄

立命館大学理工学部 正会員 高木 宣章 正会員 児島 孝之

> 要 大

表 1

拘束体

充填材

ひび割れ強度 (N/mm²)

曲げ強度 (N/mm²)

SF:シリカフューム, EP: 膨張材

プレートの力学的特性

什 様

3次元ガラス織物

膨張ペースト(50-300*)

17.7

71.3

1. はじめに

3 次元ガラス織物に膨張ペーストを充填してケミカルプレストレスを 導入した厚さ 10mm の薄板(以下、プレート)は、約 70N/mm²の曲げ強度 を有する¹⁾.本研究では、プレートを埋設型枠として実構造物に適用す ることを目的として、プレートを埋設型枠として用いた RC はりを製作 注)*: W/(C+SF)=50%, EP=300kg/m³ C:普通ポルトランドセメント し、その曲げ疲労特性について実験検討を行った.

2. 実験概要

セメント(密度: 3.14g/cm³), 細骨材に

空気量は4±1%とした.

野洲川産川砂(密度: 2.61g/cm³, FM=2.65), 粗骨材に

体の埋設型枠を含めたはりの外寸法は 150×240×

高槻産硬質砂岩砕石(密度: 2.68g/cm³, FM=6.89,

2. 天歌似女					表 2	実験	要因と	実験結果	
表1 にプレートの力学的特性を,		供試		疲労載荷	苛条件	載荷	曲げ	症堂寿命	
表2 に実験要因を示す.プレートの充		広式	a/d	上限	下限	速度	耐力	波力寿前 (回)	破壊形式
博士???+ 水注合+++以(UV//C, CE))500/=		гт∽н		荷重比	荷重比	(Hz)	(kN)		
項付には、小宿合付比[W/(C+SF)]50%,	静	N^{*1}					87.0		曲げ破壊
シリカフューム置換率[SF/(C+SF)]20_	的	S					159		底面プレート破断
% 単位膨張材量[EP]300kg/m ³ の膨張	市	F-50	3.6	79.4[50%]	15.0	1.6	169	2,000,000	底面プレート破断*2
	》反 一	F-60		95.1[60%]	13.9	1.1		775,078	引張鉄筋の疲労破断
ペーストを使用した.後打ちコンクリ))	F-70		111[70%]	[10/0]	0.8		141,682	底面プレート破断
ートは,セメントに早強ポルトランド	注)	*1:比	較用	普通 RC は	り、参考	文献 2	2)		

*2:200万回繰返し載荷終了後残存曲げ耐力確認試験を実施

ガラスチョップ ストランドマット

プレート

図 2 埋設型枠接合部詳細

ガラスロービングクロス

2000mm とし、引張鉄筋に D16 を 2 本配置した. 有効高さは 200mm, 引張 鉄筋比は 1.32% である. せん断破壊が先行しないように、スターラップに D10 を 100mm 間隔で配置した. 図 2 に埋設型枠接合部の詳細を示す. ま ず所定寸法のプレートを製作し、各プレートを仮組みする. 底面のコーナ 一部にあたる端部は、接着作業性の改善と載荷時の応力集中を防ぐため面 取りを施した.型枠内外面の接合部をガラス繊維補強材に樹脂を含浸させ ながら接着補強した.その後,後打ちコンクリートとの付着を改善するた めに,ケイ砂(粒径 2~3mm)を型枠内面に樹脂を用いて接着した¹⁾. 埋設型 枠製作後,型枠内に鉄筋を配置し,後打ちコンクリートを打設した.

疲労載荷条件は、上限荷重比を静的曲げ耐力に対して 50,60,70%、下限荷重比は 10%で一定の正弦波に よる部分片振り繰返し載荷とした.支点間距離は1800mm, せん断スパン有効高さ比(a/d)は3.6とした.載荷 試験時のコンクリートの圧縮強度は 41.1N/mm², 弾性係数は 31.6kN/mm² であった. 測定項目は、スパン中 央圧縮縁コンクリートひずみ,スパン中央の圧縮および引張鉄筋ひずみ,埋設型枠側面および底面の曲げ引張 キーワード 3次元ガラス織物,埋設型枠,曲げ疲労,補強材 連絡先 〒525-8577 滋賀県草津市野路東 1-1-1 立命館大学理工学部 TEL/FAX 077-561-2805

(kN)

重

荷

方向のプレートひずみ,支間中央たわみとした.

3. 実験結果および考察

<u>静的曲げ試験結果</u> 表2に静的曲げ試験結果を,図3に荷重と支間 中央たわみの関係を示す. プレートを埋設型枠として用いた RC は り(S供試体)は,使用していない通常の RC はり(N供試体)に比較し て曲げ剛性が大きく,曲げ耐力は約1.8倍であり,プレートの曲げ 補強効果が認められた.

曲げ疲労試験結果 表2に曲げ疲労試験結果を示す. プレートを埋設型枠に用いた RC はりは,上限荷重比 60%時では引張鉄筋の疲労破断,上限荷重比 70%時では曲げスパン内の埋設型枠底面プレートの破断により破壊した.

図4にF-50供試体の上限荷重時と除荷時の引張鉄筋およびプレート底面ひずみと繰返し回数の関係を示す.引張鉄筋ひずみおよび プレート底面ひずみは,幾分変動はあるものの繰返し載荷終了時ま で各々ほぼ同様の傾向を示している.従って,コンクリートとプレ ート間の付着は良好であり,200万回繰返し載荷終了までRCはり とプレートが一体となって荷重に抵抗していることが確認できた.

図5に上限荷重比(*S_{max}*)で表した*S-N*線図を示す.図中に示す*S-N* 曲線の回帰式は,実験値を最小自乗法で直線回帰したものである. *S-N*曲線の回帰式とプロット点との相関係数は0.974となり,高い 相関関係が得られた.プレートを埋設型枠に用いた RC はりの200 万回疲労強度は51.2%であった.

<u>残存曲げ耐力確認試験結果</u> F-50 供試体は,200 万回の繰返し載荷 を行っても疲労破壊に至らなかった.そこで,疲労試験終了後に静 的曲げ試験を実施し,残存曲げ耐力を確認した.図3に200 万回繰 返し載荷後の残存曲げ耐力確認試験における荷重とスパン中央た わみの関係を示す.静的曲げ試験時と比較すると,疲労損傷を生じ ている F-50 供試体は,残留変位が生じているものの,終局耐力の 低下は全く見られない.破壊性状は,静的曲げ試験と同様に,埋設 型枠底面プレートの破断により曲げ破壊した.

180 引張鉄筋降伏 150 120 F-50 90 60 N(静的載荷) 30 S(静的載荷) F-50(残存曲げ耐力確認試験 0 15 25 0 10 20 支間中央たわみ (mm) 図 3 荷重と支間中央たわみの関係

図4 ひずみと繰返し回数の関係

4. 結論

1)3次元ガラス織物プレートを埋設型枠として用いた RC はりは,

普通 RC はりに比較して曲げ剛性と耐力が増加し、プレートによる曲げ補強効果が認められた.

2) プレートを埋設型枠として用いた RC はりの 200 万回疲労強度は,静的曲げ耐力の 51.2% であった.

3) 疲労破壊形式は、上限荷重比が 60%時では引張鉄筋の疲労破断、70%時では曲げスパン内の埋設型枠底面 プレートの破断であった.

謝辞 アイティシー(株)誉田豊氏,サカイ産業(株)酒井麓郎氏,東レ(株)鈴川研二氏には,本研究の遂行にあたり貴 重なご意見を頂いた.ここに記して感謝の意を表す.

参考文献 1) 井上真澄,前園真一郎,諏訪聡,高木宣章,児島孝之:三次元中空構造ガラス織物を用いた埋設型枠 用薄板の曲げ特性,土木学会第57回年次学術講演会講演概要集,V-337, pp.673-674, 2002

2) 井上真澄,高木宣章,児島孝之:3次元ガラス織物プレートを用いた RC はりの曲げ・せん断性状,土木学会第58 回年次学術講演会講演概要集,V-586, pp.1169-1170, 2003

-648-