コンクリートの圧縮強度および引張強度に及ぼす供試体寸法の影響

足利工業大学大学院 学生会員 〇 崔 永哲 足利工業大学工学部 正 会 員 黒井登起雄 足利工業大学工学部 正 会 員 松 村 仁 夫

1. はじめに

コア供試体の圧縮強度試験は、JIS A 1107 によって行われる。しかし、部材厚などの関係から、供試体寸法(高さ)を把握する必要性があることと、高強度領域(40MPa以上)の場合、実験データが少ないため強度に及ぼす影響は、未だ不明な点が多いと言える。また、割裂引張強度試験は、JIS A 1113 に従って作成し、JIS A 1132 により行われる。しかし、最近、コンクリート用粗骨材に砕石が使用されるようになり、粗骨材の最大寸法 20mm が多くなってきていること、試験用供試体の軽量化を図りたいなどの背景から、 ϕ 100×200mm の円柱形供試体で強度試験を行う傾向が各方面で見受けられる。そこで、本研究では、コア供試体の圧縮強度に及ぼす直径と高さ(h/D)の影響(側面形状の把握)および割裂引張強度に及ぼす供試体寸法(ϕ 100×200mm、 ϕ 150×150mm および ϕ 150×200mm)の影響を実験的に検討することを目的とした。

2. 実験概要

2.1 使用材料および要因

使用材料とその物理的 性質および実験要因・水 準は、表-1 および表-2 に 示す。配合条件は、W/C =20%(スランプフロー = 55±5cm, 空気量= 5±1%)、W/C =30% (ス ランプ=10±1cm, 空気量

表-1 使用材料および物理的性質

	種 類 (産 地)		密度 (g/cm ³)	吸水率(%)	粗粒率
セメント	普通ポルトランドセメント		3.16		
細骨材	*1川砂利(圧縮試験) 川砂利(割裂引張試験)		2.63 2.64/2.63	1.65 2.07/1.65	2.57 2.43/2.57
粗骨材	*2 硬質砂岩砕石	Gmax20 mm	2.63 **42.65/2.63	0.94 0.77/0.97	6.77 6.78/6.77
		Gmax13 mm	2.63	0.75	7.05
	※3 玄武岩砕石	Gmax13 mm	2.91	0.52	6.00

※1 鬼怒 川産 ※2 葛生産(20 mm:13 mm=1:1) ※3 田沼産 ※4 割裂引張試験

 $=5\pm1\%$), W/C=40 \sim 60%,

(スランプ=10±1cm, 空気量=5±1%) とした。材齢は, 28 日 (圧縮試験) および7日, 28日, 91日 (割裂引張試験) とした。混和剤は, 高性能 AE 減水剤, (高強度) および AE 減水剤, AE 剤 (普通強度)を使用した。

2.2 実験方法

(1) 圧縮試験(コア供試体): 練混ぜは,

表-2 実験要因と水準

粗骨材の最大寸法	13 nm,20 nm (圧縮試験) 20 nm (割裂引張試験)
水セメント比(W/C)	20%, 30%, 40%, 50%, 60% (圧縮試験) 40%, 50%, 60% (割裂引張試験)
コア供試体の直径	φ75 mm, φ100 mm(圧縮試験)
コア供試体の高さ(h)	D×1.0, 1.2, 1.4, 1,81.9, 2.0,2.1
供試体寸法	φ 100×200mm, φ 150×150mm φ 150×200mm (割裂引張試験)
供試体個数	10個 (割裂引張試験)
端面仕上げ	研磨有り、研磨なし

容量 100 %のパン型強制練りミキサで行い、30×40×25cm の試験体を作製した。養生方法は、脱型後7日湿布養生し、試験材齢 28 日まで気中養生とした。コア供試体は、 JIS A1107 に従って、水準毎にコアドリルによって 3 個採取し、コンクリートカッターで所定の高さに切断した後、研磨機によって

キーワード; コア供試体,供試体寸法,試験方法,圧縮強度,割裂引張強度

連絡先; 〒326-8558 足利市大前町 268-1 TEL 0284-64-1061

両端を研磨した。また,一部のコア供試体に ついては, 圧縮強度試験前に, 変位測定用装 置で側面形状(凹凸)の測定を行った。

(2) 割裂引張試験:練混ぜは、各配合とも4バ ッチに分けて行い、練混ぜ量は、95 にとした。 引張強度試験用供試体は, 寸法毎にそれぞれ 10 個および圧縮試験用供試体を 3 個作製した。 なお、スランプ試験および空気量試験は、各 バッチにおいて実施した。強度試験は,各材 齢において JIS A 1113 に従って実施した。

3. 実験結果および考察

3.1 圧縮強度に及ぼすコア供試体高さの影響

図-1 および図-2 は、普通強度から高強度領 域におけるコンクリートの ø100 mmおよび φ75mmコア供試体の圧縮強度比とh/Dの関係を 示す。また,直径と高さの比(h/D)が2.0の時 の圧縮強度を1.0と表した。図より、高強度領 域の圧縮強度比は、JIS の補正曲線と同じ傾向 が認められるが、強度の変動が大きく、さらに 検討が必要である。普通強度領域における圧縮 強度比と h/D の関係は、JIS A 1107 の補正曲線 に近似される結果が得られる。なお、h/D=2.0 の時の高強度および普通強度領域の圧縮強度 は、52.8~86.8N/mm² および 29.0~49.2 N/mm² であった。また、コア供試体の側面は、極端な 凹凸が見られなかった。

3.2 引張強度と供試体寸法との関係

図-3 は、 $W/C=40\sim60\%$ のコンクリートにおけ る JIS に規定された ø 150×200mm 供試体の引張強 度とφ100×200mm およびφ150×150mm 供試体の 引張強度(端面研磨有り,なし)との相関を示す。 をしない場合の引張強度(W/C=60%の場合)は,

 ϕ 150 × 150 mm 図-3より、W/C=40%および50%の場合、端面仕上 ϕ 100 × 200 mm ϕ 150 × 150 mm げに関係なくφ150×200mm供試体の引張強度と非 ϕ 100 × 200mm 常に高い相関が認められる。しかし、端面仕上げ 2 ϕ 150×200mm供試体の引張強度(N \nearrow mm 2) 相関関係は低くなる傾向が認められる。 図-3 寸法の異なる供試体の引張強度の相関 4. まとめ 普通強度領域のコア供試体の圧縮強度比と h/D の関係は、JIS A 1107 の補正曲線に近似する傾向が ある。しかし、高強度領域の場合、強度変動が大きく、更に検討が必要である。また、小さい寸法 (φ 100×200mm) の引張強度は、 φ150×200mm 場合の強度と非常に高い相関が認められる。

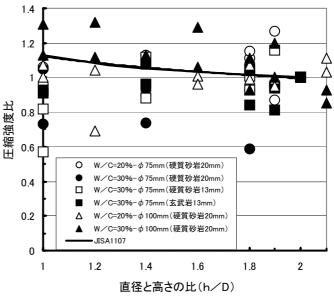


図-1 圧縮強度比と h/Dのとの関係

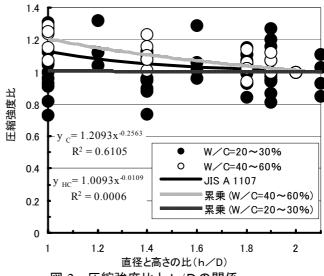
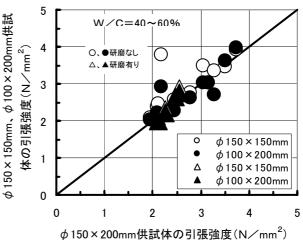



図-2 圧縮強度比と h/Dの関係

