5-114

塩害環境下におけるモルタル中鉄筋の分極曲線の評価

金沢工業大学大学院	11 工学研究科	環境土木工学専攻	学生会員	長谷川裕介
金沢工業大学工学部	3		正会員	宮里心一
金沢工業大学大学院	17 工学研究科	環境土木工学専攻	学生会員	平石陽一
鹿島建設(株) 技術研究所			非会員	親本俊憲
鹿島建設(株) 技術	研究所		正会員	横関康祐

1.はじめに

鉄筋コンクリートは、多くの土木構造物に用いられる部 材である。特に、実在する鉄筋コンクリート部材を鑑みる と、ひび割れや初期欠陥等が存在する部位において腐食が 進行し、耐用年数を迎えることになる。したがって、ひび 割れ部あるいは初期欠陥部等に生じるマクロセル腐食を考 慮し、耐用年数を設定しなければならない。しかしながら、 腐食形態を考慮して、鉄筋コンクリートの腐食速度を解析 するモデルは存在しなかった。

上述の背景を踏まえて、図1に示す解析フローに基づく モデルの作成を行っている。ただし、モデルには分極特性 がデータとして必要であるが、その基礎的検討は未だ充分 ではない。そこで本研究では、水セメント比、塩化物イオ ン濃度およびひび割れ幅が、欠陥を有するモルタル供試体 の分極曲線に及ぼす影響を評価した。

2.実験概要

本研究では図2に示すモルタル供試体を作製した。すなわち、ひび割れやコールドジョイントを模擬したスリットを設けた。また、欠陥近傍の局所的な分極曲線を評価するために、分割した鉄筋(以下、分割鉄筋¹⁾と称す)を埋設した。供試体は打設後28日間湿空養生(20、RH90%)し

た後、鉄筋の腐食を進行させるために、1日塩水噴霧・2.5 日乾燥の塩害促進暴露を49日間行った。また、鉄筋の分極 曲線には、水セメント比、塩化物イオン濃度およびスリッ ト幅などが影響すると考えられるので、表1に示す各パラ メータを実験ケースとして与えた。なお、No.1を基準供試 体とし、各実験ケース毎に2本(A,B)の供試体を用いた。

ここで、分極曲線の測定方法を示す。はじめに鉄筋要素 間を接続しているリード線を一度切断した。次に供試体中 央のモルタル表面にステンレス板を設置した。さらに Ag/AgCl を参照電極とし、スリットと接する鉄筋要素とス テンレス板の間にポテンショスタットを接続し、鉄筋要素 の電位を1mV/秒にて強制的に貴または卑へ変化させ、そ の時に流れる電流を記録した。

表1 実験ケース

供試体	W/C	Cl-(%)	スリット 幅(mm)	温度()	湿度
1	0.5	3	0.4	20	90
2		15	★		
3	.	3	0.05		
4	0.3	*			
5	0.5	なし	V		
6		3	なし		
7			0.2		
8	V	6	0.4	V	¥

キーワード:塩害、アノード分極曲線、カソード分極曲線、水セメント比、塩化物イオン濃度、ひび割れ幅 連絡先:〒921-8501 石川県石川郡野々市町扇が丘7-1 TEL 076-248-1305 FAX 076-294-6713

図5 スリット幅がアノード分極曲線に及ぼす影響

3.結果と考察

図3から図7において、分極曲線を示す。

(1)水セメント比が分極曲線に及ぼす影響

図3および図6によれば、水セメント比が低いほど電流 は少なくなることが認められる。これは水セメント比が低 いほど、モルタル内部は密になり、腐食要因物質の供給が 少なくなるためと考えられる。

(2) 塩化物イオン濃度がアノード分極曲線に及ぼす影響

図4によれば、塩化物イオンの存在により、電流は多く なることが認められる。これは、塩化物イオンの存在によ り、アノード反応が活性化するためと考えられる。 (3)スリット幅が分極曲線に及ぼす影響

電流密度mA/cm2
図7 スリット幅がカソード分極曲線に及ぼす影響

0.01

0.1

0.001

図5および図7によれば、スリットが存在する場合に電 流は多くなり、特にスリット幅が広いほど電流は多くなる ことが認められる。これは、スリットが存在することで塩 化物イオンや酸素の鉄筋への供給が多くなるためと考えら れる。また、既往の研究²⁾にて認められるように、スリッ ト幅が0.08mm以下の場合はスリット幅が狭いほど電流が少 なくなる。一方、0.08mm以上ではスリット幅に拘らず電流 の大きさは一定である。

4.まとめ

0.00001

0.0001

水セメント比、塩化物イオン濃度およびスリット幅が、 欠陥を有するモルタル供試体の分極曲線に及ぼす影響を評 価できた。

【参考文献】

1) 宮里心一、大即信明、小長井彰祐、分割鉄筋を用いた マクロセル電流測定方法の実験的・理論的検討、コンクリ ート工学年次論文集、Vol.23、No.2、pp.547-552(2001) 2) 塚原絵万,加藤佳孝,魚本健人,塩化物イオンの移動 評価におけるひび割れのモデル化,コンクリート工学年次 論文集,Vol.24,No.1,pp.573-578(2002)