初期荷重を受けCFRPシートで補強されたRC梁の曲げ挙動に関する実験的研究

北海学園大学工学部 正 員 〇高橋 義裕 北海道大学工学部 正 員 佐藤 靖彦

1. はじめに

既存構造物の補強を行う上で重要なことは、曲げ及びせん断に対して十分な補強効果を有しているとともに、その施工 性に優れていることであり、連続繊維シートはこの様な要求を十分に満たす新しい補強材料である。現在、連続繊維シー ト、特に炭素繊維(以下「CFRP」)シートは、高い引張強度を持ち軽量で耐食性に優れ、施工性に優れたシート状である ため既存構造物の補強材に用いた事例が増えつつある。また、通常部材の補修補強を行う場合、その部材は何らかの初期 荷重を受けた状態で補強補修を行うことになる。そこで著者らは初期荷重をRCはりに作用させ、ある程度はりに損傷を与 えた後にCFRPシートをはり下面に貼付し、さらに下面をくるむ様にウェブ全高さに帯状のCFRPシートをゼブラ状にUー字 に巻上げ(以下「Uー字補強」と呼ぶ)、再度静的曲げ載荷試験を行い、はりの曲げ性状及びシートのひずみ性状につい て実験的に検討した。

2. 実験概要

実験供試体は表-1に示す14体である。実験供試体の形状・寸法・鉄筋配置等については**図-1**に示す。主鉄筋はD19を 2本,せん断補強鉄筋はD10を10cmピッチで配置した。供試体F0とF1は、シートを全く貼り付けていないRCはりであり、 初期荷重の有無による最大荷重確認実験の為に行ったものである。供試体F0を基準供試体とする。初期荷重の大きさとし ては、基準供試体F0の約70%程度(=140 kN近傍)とした。供試体F2~F4は、シートをそれぞれ1層~3層まで変化させた。 供試体F5~F7は、シート層数は供試体F2~F4と同じであるが、剥離耐力向上を目的としシートとコンクリートとの間に緩 衝材を用いた供試体である。供試体F8~F10は、シート層数は供試体F2~F4と同じであるが、緩衝材無してU字補強をおこ なった供試体である。供試体F11~F13は、シートと緩衝材は、供試体F5~F7と同じでさらにU字補強を施した供試体であ る。**図-2**にU字補強のイメージ図を示す。実験結果一覧を**表-1**に、材料の力学特性値を**表-2**に示す。

3. 実験結果及び考察

図-3は、最大荷重-シート層数の関係を各補強タイプ別に示したものである。同図よりCFRPシートで補強することにより最大荷重が増加するが、シート層数の増加割合ほどは増加しない。また、CFRPシートによるU字補強により確かにシートの急激な剥離破壊は生じなっかたが、コンクリート又は緩衝材とコンクリートとの間での剥離ずれが発生して、最大荷重に達した。

図-4は、CFRPシート1層を貼付しU字補強無しで、緩衝材の有無による荷重-たわみ関係を示したものである。同図中には、シート1層の断面分割法による計算値(緩衝材は特に考慮していない)も示されており、計算値は実験地をある程度追跡していると思われる。また、緩衝材を用いた場合の方が、緩衝材を用いなかった場合に比べ、たわみの傾きが若干急になっている。このことは曲げ剛性が若干増加のしたことを示している。

図ー5は、CFRPシートが1層に関しU字補強無しで、緩衝材の有無によるスパン中央での荷重-CFRPシートひずみ関係を示したものである。緩衝材の有る場合、シートひずみは12000 μ 近傍にまで達している(ただし、シートの破断ひずみは約15000 μ である)。緩衝材の存在によりシートへの応力伝達が十分に行われているものと思われる。

4. まとめ

今後さらに検討すべき点もあるが本研究の範囲で得られた知見を以下に示す。

(1)シート層数の増加によりその最大荷重も増加するが、シート層数の増加割合ほどは増加しない。(2)終局状態は全てCFRPシートの剥離により決定した。(3)荷重ーたわみ関係より緩衝材を用いてFRPシートを貼付した場合の曲げ剛性は若干増加する。(3)荷重-CFRPシートひずみ関係より緩衝材を用いた供試体の方がシートの能力を最大限発揮出来る可能性を示した。

謝 辞

本研究の遂行において緩衝材等の材料提供頂いた新日本石油(株)の関係各位に深く感謝の意を表します。また、実験を進めるに当たっては、北海学園大学工学部土木工学科の学生諸氏の協力を得た。

CFRPシート、U字補強、RCはり、曲げ補強、曲げ耐力

〒064-0926 札幌市中央区南26条西11丁目 TEL:011-841-1161 FAX:011-551-2951

表一1 実験結果一覧							
No	シート	初期載 荷	緩衝材	U字補強	$f_c(MPa)$	最大荷重 (kN)	破壊形式
F00	0				40.3	193	曲げ破壊
F01	0	有り			42.1	194	曲げ破壊
F02	1	有り			43.0	214	シート剥離
F03	2	有り			46.3	227	シート剥離
F04	3	有り			48.2	260	シート剥離
F05	1	有り	有り		46.3	228	シート剥離
F06	2	有り	有り		56.3	266	シート剥離
F07	3	有り	有り		55.5	302	シート剥離
F08	1	有り		有り	40.8	230	シート破断
F09	2	有り		有り	42.6	243	シート剥離
F10	3	有り		有り	48.7	286	シート剥離
F11	1	有り	有り	有り	47.3	252	シート破断
F12	2	有り	有り	有り	47.3	298	シート剥離
F13	3	有り	有り	有り	43.5	331	シート剥離

	表-2	使用材料の	特性値
		繊維目付量	$300 \mathrm{g/m^2}$
		設計厚さ	0.167mm
CFI	Rシート	引張弾性率	230GPa
		引張強度	3480MPa
		破断ひずみ	15130μ
鉄筋	D19	降伏強度	371MPa
	(SD345)	引張強度	570MPa
	D10	降伏強度	377MPa
	(SD295A5)	引張強度	537MPa
1	经循动才	引張強度	1MPa
/12	1/1/13	伸び率	70%以上

図-4 荷重-たわみ (1層)

図-5 荷重-シートひずみ (1層)