円形立坑におけるRC分割エレメント工法の構造解析について

㈱熊谷組	正会員	岩波	基
早稲田大学	学生会員	古屋知	頂
(株)熊谷組		篠田貴	眃

1.はじめに

大深度のトンネル工事では,その発進や到達,中間立坑等が建設される.その工事は、立坑の狭隘な空間での高所作業となるため,危険なものとなる.さらに,熟練作業員が必要であり,工期もコンクリートの養生期間等によって長くなるのが一般的である.

分割したプレキャストコンクリートによる立坑築造工法(以下,「RC分割エレメント工法」と呼ぶ.)は, 工場で分割して作成されたコンクリート二次製品を現場で組み立てるものである.したがって,工期の短縮が 可能となり,立坑内の狭隘な空間で鉄筋・型枠組立や足場組立・解体等の高所作業を行う必要がなくなり,安全 性が向上する.また,場所打ちコンクリートよりも躯体厚を薄くでき,コンクリートも高品質となり,さらに, 水膨潤シール材を用いることで止水性の確保が可能となる.このような利点の多い工法であるが,大深度にお ける実績例が少なく,その設計法が確立されていないのが現状である.

RC分割エレメント工法で大深度地下の立坑を構築する場合,構造的に有利な円形断面が採用される.その 立坑の設計計算は水平断面について着目し,構造解析には,はり・ばねモデルによる解析と,エレメントを剛 性一様なリングとする慣用計算法が提案されている.しかし,大深度地下の円形立坑ではシールドトンネルよ りも軸力が卓越するため,前者のモデルでは継手の曲げ剛性を過小に,また,後者のモデルでは過大に評価し ている可能性がある.

そこで,本報文は,両者のモデルによって数値実験を行い,その結果から,モデルの違いが設計計算結果へ 与える影響について検討したものである.

2.解析条件

ここでは, 立坑の掘削深度を 50mに設定した. 立坑の外径は分 割エレメント工法の実績から3水 準を定め,その外径より一般的な 壁厚と,継手の回転ばね定数を設 定した.また,地盤条件は,深度 20mまでを沖積層,それ以深を洪 積層として土圧,水圧,および, 地盤反力係数を定めた.また,偏 側圧は全側圧の10%を考慮した. 表-1に解析条件を示す.

図-1 に示すようなはり・ば ねモデルと図-2 の剛性一様慣 用計算法とを用いて数値実験 を行った.はり・ばねモデルは, エレメント部材の中心を通る 軸線をはりで,継手部を回転ば ねでモデル化し,ノンテンショ ンの地盤ばねを考慮した.剛性 一様慣用計算法は,エレメント の継手を無視したリングでモ デル化し,側圧と地盤反力を分 布荷重として評価した.

表-1 解析条件

		case1	case2	case3	case4	case5	case6
	外 径(m)	8.0	6.0	4.0	8.0	6.0	4.0
立坑形状	厚み(m)	0.40	0.35	0.30	0.40	0.35	0.30
	分割数	6	6	5	6	6	5
継手回転は	継手回転ばね定数(kN・m/rad)		60000	40000	100000	60000	40000
コンクリート物性	設計基準強度(N/mm ²)	42					
	弾性係数(kN/m ²)	3300000					
	単位重量(kN/m ³)	19					
地盤条件	N值	20			50		
	土圧係数 K _o	0.5			0.1		
水平方向地盤ばねkH(kN/m ³)		15907	19738	26752	39768	49344	66881

キーワード:大深度,円形立坑,プレキャストコンクリート,構造解析モデル 連絡先:〒162-8557 東京都新宿区津久戸町2番1号 TEL 03-3235-8622 FAX 03-3266-8525

深	度20m	軸力(kN)	曲げモーメント (kN·m)	最大圧縮応力度 (N/mm ²)	、力度 ²) 深度50m		軸力(kN)	曲げモーメント (kN·m)	最大圧縮応力度 (N/mm ²)
case1	はり・ばね1	1146.0	47.5	0.95	case4	はり・ばね1	2140.6	97.7	1.82
	はり・ばね2	1147.6	46.5	0.95		はり・ばね2	2142.8	100.3	1.83
	慣用計算法	1135.0	62.5	1.01		慣用計算法	2162.6	79.6	1.76
case2	はり・ばね1	846.9	31.1	0.69	case5	はり・ばね1	1596.8	49.8	1.26
	はり・ばね2	847.8	30.9	0.69		はり・ばね2	1599.4	50.2	1.27
	慣用計算法	838.2	41.4	0.72		慣用計算法	1597.3	56.8	1.29
case3	はり・ばね1	544.6	18.2	0.44	case6	はり・ばね1	1029.0	28.7	0.80
	はり・ばね2	546.4	18.6	0.44		はり・ばね2	1035.1	29.4	0.81
	慣用計算法	542.1	21.3	0.45		慣用計算法	1029.4	33.4	0.82

表-2 解析結果

3.解析結果

各解析ケースにおける最大曲げ モーメントとその位置での最大圧 縮応力度を表-2に示す.また,は り・ばねモデルによる解析結果の うち曲げモーメント分布と,剛性 一様慣用計算法によるそれとを比 較して図-3~8に示す.なお,は り・ばねモデルでは,偏側圧が作 用する方向と継手位置との関係で 解析結果が異なるため2ケースの 解析を実施した.

表-2から分かるように,全ての ケースで,はり・ばねモデルによ る解析結果の最大圧縮応力度と剛 性一様慣用計算法によるそれとの 差は数パーセント以内でほぼ等し い.したがって,どちらのモデル によって構造解析を行っても,設 計上,問題がないものと考える.

全てのケースで,はり・ばねモ デルによる解析結果の軸力分布は, 剛性一様慣用計算法によるそれと ほぼ一致した.しかし,図-3,6に 示すように,両者の曲げモーメン トの分布のモードに差があること が分かった.また,case4 を除いた 全てのケースで,はり・ばねモデ ルによる解析結果の最大曲げモー メントが,剛性一様慣用計算法に よるそれらより小さくなっている.

50 -100 -

図-3 曲げモーメントの分布(case1)

図-4 曲げモーメントの分布 (case2)

図-6 曲げモ-メントの分布(case4)

図-7 曲げモーメントの分布(case5)

4.おわりに

以上の結果から得られた知見を 図-5 曲げモーメントの分布(case3) 以下に示す.

e3) 図-8 曲げモーメントの分布(case6)

外径 8m 以内の大深度円形立坑の設計においては,はり・ばねモデルによる解析と剛性一様慣用計算法の どちらを用いても問題を生じないと考えられる.

外径 8m 以上の立坑の挙動を詳細に再現するためには,軸力が大きい場合の継手評価が必要と考える.