坑道展開方向による水理学的な掘削影響の変化に関する解析的検討

清水建設株式会社 〇正 郷家光男,正 堀田政國,正 若林成樹,正 多田浩幸 核燃料サイクル開発機構 正 佐藤稔紀, 中間茂雄,正 青木俊朗

1. はじめに 岩盤中に坑道を掘削すると、その周辺では岩盤の性質が変化する領域(掘削影響領域)が生じると想定される. 岩盤の透水性に着目すると、不連続性岩盤では、坑道掘削による応力再配分に伴う割れ目の開口幅の変化が透水性変化の要因の1つであると考えられる.本報告はクラックテンソルモデルを用いて坑道掘削時の周辺岩盤の応力を求め、その応力と仮想割れ目モデルを用いて透水性変化解析を行い、水理学的な掘削影響の変化について検討したものである.

2. 解析の概要 ここでは、不連続性岩盤を解析の対象とした、仮想割れ目モデルによる透水性変化解析を行うためには、坑道掘削後の岩盤の応力を求めておく必要があり、応力-0 がみ関係として、 Oda^{1} 0のクラックテンソルモデルを用いることにした。本解析では、割れ目の垂直剛性とせん断剛性に関するパラメータhとgに対しては、応力依存性を考慮しないこととし、不連続性岩盤を等価な異方線形弾性体と置き換えた解析を行う 2 0.

石井ら 3 は,岩盤の透水性は仮想的な割れ目の方向分布と各割れ目の透水性から決定されると考えて,仮想割れ目モデルによる岩盤の透水テンソルを定式化した. 2 次元解析の場合の透水テンソル $^{k_{ij}}$ は,次式の様になる.

$$k_{ij} = \rho \sum_{f} le_{f} k_{f} \left(\delta_{ij} - n_{i} n_{j} \right) D_{f}$$
 (1)

ここで、 ρ は割れ目の面積密度、lはトレース長、 e_f は水理学的開口幅、 δ_{ij} は Kronecher のデルタ、 D_f はトレースの法線ベクトルnの方向に関する相対頻度である。また、 k_f は割れ目の透水係数であり、割れ目に作用する垂直応力 σ_n によって変化する.

坑道掘削後の岩盤の応力と式(1)により,周辺岩盤の平 均透水係数を求めて,これを岩盤の初期透水係数(掘削 前の透水係数)で除することにより,周辺岩盤の透水係 数の変化率を算定することができる.

3. 解析条件 解析条件の設定に岐阜県瑞浪市にある核燃料サイクル開発機構の正馬様用地の3次元岩盤力学モデル 4)を用いた. この用地は白亜紀の土岐花崗岩を基盤として,上位を新第三紀中新世の堆積岩類が覆っており,3次元岩盤力学モデルは深度1000m級の試錐孔調査などを基にして構築されている. そして,水平面内の最大主

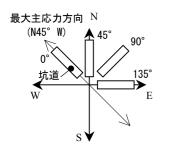
応力の方向は、おおむね、N45°W方向となっている.

坑道の深度は GL-945m, 形状は 3m×3m の馬蹄型とした. 図-1 に示すように, 坑道軸を水平面内の最大主応力方向に対して 0°, 45°, 90°, 135°の方向に展開させた 4 ケースについて解析した. 図-3 に示すように, 解析断面の座標軸は y 軸を鉛直方向, x 軸を展開方向によって変化させた. なお, 解析に用いる初期応力は 3 次元岩盤力学モデルの応力を各解析断面に投影したものとした.

割れ目の方向分布は試錐孔の BTV 観察結果より岩盤 区分ごとに求めた. GL-945m 周辺に分布する岩盤の割れ目の法線方向をシュミットネット(下半球投影)にプロットしたものを図-2 に示す. 解析では, 図-2 を各解析断面に投影したトレースを用いた.

トレース長は割れ目の頻度との関係 5 から, I=0.44m となった. 割れ目の垂直剛性に関するパラメータ h は割れ目を含んだ岩石コアを用いた室内試験結果 6 を基に設定した $^{2)}$. また,せん断剛性に関するパラメータ g は室内試験結果 6 と次式 $^{2),7}$ により求めた.

$$g = r\sigma_n \tan \left(JRC \log_{10} \frac{JCR}{\sigma_n} + \phi_r \right) / u_p$$
 (2)


ここで、r は割れ目の面積を円で置き換えたときの直径、JRC は割れ目の粗さ係数、JCR は割れ目の圧縮強度、 ϕ は残留摩擦角、 u_p はピーク強度時のせん断変位であり、垂直応力 σ_n は表-1 に示された各ケースの平均初期応力を用いた。

割れ目の透水係数 k_f と垂直応力 σ_n の関係は石井ら $^{3)}$ の解析で用いられた実験式を用いた。割れ目の面積密度 ρ は、式(1)に仮に ρ =1を代入して初期応力状態の平均透水係数を求め、その値と**表**-1の実測された岩盤の初期透水係数 5 から比例計算で算定することができる。

以上の様にして得られたケースごとのパラメータの一 覧を**表-1** に示す.

4.解析結果 坑道掘削時の周辺岩盤の主応力を図-3 に示す.この図によると,掘削境界付近の要素では最大主応力方向は境界接線方向となっていることが分かる.各ケースの主応力の最大値を比較してみると,ケース3,4がケース1,2の約1.3倍となっていて,初期応力の変化と調和的になっていることが分かった.

キーワード:掘削影響領域,透水係数,不連続性岩盤,クラックテンソルモデル,仮想割れ目モデル 連絡先:〒135-8350 東京都江東区越中島 3-4-17 清水建設技術研究所 Tel. 03-3820-8438 Fax. 03-3820-5959

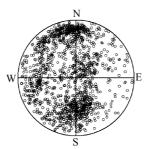


図-2 割れ目分布

表-1 解析に用いたパラメータ

$egin{array}{c ccccccccccccccccccccccccccccccccccc$	k_7	展開	ヤング係数		初期。	芯力 ⁴⁾ ((MPa)	初期透水係		h(MDa)	c(MDa)
	7-1	方向	$E^{4)}$ (MPa)	$v^{4)}$	$\sigma_{\!\scriptscriptstyle \chi}$	$\sigma_{\!\scriptscriptstyle \mathcal{V}}$	τ_{xy}	数 5)	(m/s)	n(MFa)	g(wra)
$egin{array}{c c c c c c c c c c c c c c c c c c c $	1	0°			16.47	15.86	1.76			13900	
4 135° 23.69 15.86 -1.47 165 162 $7-2$ 23.69 15.86 -1.47 162	2	45°	47400	0.34	17.09	15.86	1.02	1.1 × 10-8		17700	14000
$f_{ extstyle 7-7}$ $D = f_{ extstyle 7-7}$ $D = f_$	3				24.59	15.86	-0.32	1.1	1.1×10		16400
F_{11} F_{12} F_{22} F_{1111} F_{1122} F_{1112} F_{2222} F_{2212} 密度 ρ (本/ π) 1 0.294 0.021 0.356 0.202 0.092 0.003 0.264 0.018 909 0.219 0.219 0.057 0.431 0.142 0.077 0.042 0.354 0.015 962.	4	135°			23.69	15.86	-1.47				16200
F_{11} F_{12} F_{22} F_{1111} F_{1122} F_{1112} F_{2222} F_{2212} 密度 ρ (本/ π) 1 0.294 0.021 0.356 0.202 0.092 0.003 0.264 0.018 909 2 0.219 0.057 0.431 0.142 0.077 0.042 0.354 0.015 962											
2 0.219 0.057 0.431 0.142 0.077 0.042 0.354 0.015 962	ケース	クラ	ックテンン	I V F_{ij}	ク	ラック	テンソ	プレ F	, ijkl		
	ケース			,							
3 0.312 0.028 0.338 0.219 0.093 0.036 0.245 -0.008 149	ケース	F_{11}	F_{12}	F_{22}	F_{1111}	F_{1122}	F_{1112}	F_{2222}	F_{2212}	密度 $ ho$	
	ケース 1 2	F ₁₁ 0.294	F_{12} 0.021	F_{22} 0.356	F ₁₁₁₁ 0.202	F_{1122} 0.092	F_{1112} 0.003	F_{2222} 0.264	F_{2212} 0.018	密度ρ	(本/m²)
4 0.337 -0.005 0.313 0.248 0.090 0.008 0.223 -0.013 150		F ₁₁ 0.294 0.219	F_{12} 0.021 0.057	F_{22} 0.356 0.431	F_{1111} 0.202 0.142	F_{1122} 0.092 0.077	F_{1112} 0.003 0.042	F_{2222} 0.264 0.354	F_{2212} 0.018 0.015	密度ρ	(本/m²) 909.6
3 0.512 0.028 0.538 0.217 0.035 0.036 0.243 0.006 147	ケース	F_{11}	F_{12}	F_{22}	F_{1111}	F_{1122}	F_{1112}	F_{2222}	F_{2212}	密度 $ ho$	(本/m

※) 初期応力は圧縮が正

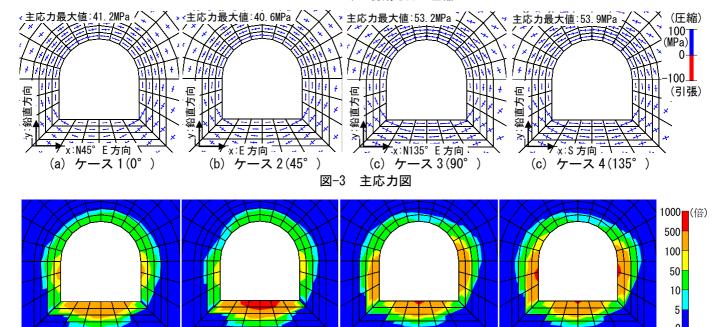


図-4 透水係数の変化率の分布図

ケース 3(90°)

ケース 2(45°)

透水係数の変化率の分布を図-4 に示す.この図によると,いずれのケースにおいても坑道全周にわたって透水係数は増加した.ただし,同一深度でも展開方向が変化すると,変化率の分布や増加の程度は変化した.

底盤において透水係数が 10 倍以上の増加を示した領域の幅は約 $0.9 \sim 1.0 m$,最大増加率は約 $500 \sim 900$ 倍となった. 広がり方に着目すると,ケース 2 がやや大きめになった. クラックテンソル F_{ij} を比較してみると,ケース 2 では法線ベクトル n の卓越方向がほぼ鉛直方向で,他よりも集中度が大きかったことが影響したと考えられる. 側壁において 10 倍以上の増加を示した領域の幅は約 $0.5 \sim 0.7 m$,最大増加率は約 $110 \sim 670$ 倍となった. そして,展開方向による最大増加率の変化を見てみると,初期応力 σ_{ij} の変化に影響を受けていることが分かった.

以上より、透水係数の変化率の分布は、割れ目の幾何 学的特性と初期応力の相互の影響により変化することが 明らかになった.

5. おわりに クラックテンソルモデルと仮想割れ目モ

デルを用いて,坑道の展開方向の違いによる水理学的な 掘削影響の変化について検討を行った結果,以下のよう な結果を得た.

ケース 4(135°

- ・いずれのケースでも坑道全周にわたって透水係数は増加し、底盤面から約1m、側壁面から1m以下の範囲で10倍以上の透水係数の増加がみられた.
- ・坑道の展開方向によって透水係数の変化率の分布は変化し、それは、割れ目の幾何学特性と初期応力の相互の影響に依存する.

今後の課題として、モデルの妥当性を検討していくために、原位置透水試験による検証を行っていく必要があると考えている.

参考文献 1)Oda, M.: Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. Vol.25, No.2, pp.59-69, 1988. 2)多田ほか: 土木学会論文集, No.511/III-30, pp.47-55, 1995. 3)石井ほか: 土木学会論文集, No.715/III-60, pp.237-250, 2002. 4)森ほか: 第 33 回岩盤力学に関するシンポジウム講演論文集, pp.457-462, 2004. 5)森ほか: サイクル機構技術資料, JNC TJ7400 2002-007, 2002. 6)畑ほか: サイクル機構技術資料, JNC TJ7430 2001-002, 2001. 7)Bandis, S. et al.: Int. J. Rock. Mech. Min. Sci. & Geomech. Abstr. Vol.18, pp.1-21, 1981.