
 
The Definition of Isotropy and the Generalized Rotational Hardening of Soils 

 
Kyushu University Member Koichi HASHIGUCHI 

 
1. Introduction  

The consideration of anisotropy is of importance for the description of deformation of materials. 
However, the distinction between the isotropy and the anisotropy, i.e. the definition of isotropy would not 
have been explained in any literature but the confusion between the isotropy of mechanical response and 
the material-frame indifference requiring that a constitutive equation has to be described by the isotropic 
tensor function is seen often. Then, the definition for the isotropy of mechanical response is first given in 
this article. The anisotropy for the plastic deformation behavior is described through the anisotropy of 
yield surface. The generalized anisotropic yield surface rotated around the central axis is given for soils, 
which is called the generalized rotational hardening. 
 

2. Definition of isotropy 
Due to the principle of material-frame indifference, constitutive equations have to be described by 

the scalar- or tensor-valued isotropic tensor function f fulfilling   
[ ( , ; , ,  )] = ( [ ], [ ], [ ], [ ],  [ ] )i iQ f S f Q Q Q Q Q Sσ ε σ ε σ ε σ ε ,                   (1) 

 
where σ  and ε  are stress and strain measures, respectively, σ  is proper corotational stress rate, ε  
is proper strain rate measure, and Si denotes collectively the tensor-valued internal variables. Q is an 
arbitrary orthogonal tensor, and Q[ ] designates 
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[ ]( ) = mm m m q q qp p p p q p p qq TQQ Q• • • ⋅⋅⋅⋅⋅⋅Q T ,                     (2) 

for an arbitrary nth-order tensor T. 
Constitutive equations fulfilling the isotropy of mechanical response have to be independent of the 

rotations of directions of only the stress (rate) and strain (rate) and thus it has to fulfill the relation  
[ ( , ; , ,  )] = ( [ ], [ ], [ ], [ ],   )i iQ f S f Q Q Q Q Sσ ε σ ε σ ε σ ε                    (3) 

which means that internal variables Si have to be involved in scalar forms. 
 
3. Isotropy for plastic deformation: Yield condition 

Anisotropy in a plastic deformation of materials can be described by a yield condition. A yield 
condition is generally described by the equation  

( ,  ) = ( )if F HSσ ,                                (4) 
where H is the isotropic hardening variable. Due to Eq. (3) the isotropic yield condition has to reduce to 
the equation 

 
( ) = ( )f F Hσ .                                 (5) 

 
2. Anisotropy of soils: Generalized rotational hardening 

As was interpreted in the previous article (Hashiguchi, 2000), the kinematic hardening is not 
applicable to pressure-dependent materials but the rotation of yield surface (Sekiguchi and Ohta, 1977),  
i.e. the rotational hardening has to be incorporated as follows: 
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 ˆ( , ) ( )=pf F Hχ ,                               (6) 
where 

1
3t r p ≡ − σ ,  * +p≡ Iσ σ ,  *

p≡ ση ,                      (7) 

ˆ ≡ −βη η ,  ˆ
ˆ
ˆ
m

χ ≡ η .                              (8) 

β  is the second-order tensor the evolution rule of which was given Hashiguchi (1994) or Hashiguchi and 
Chen (1998). m̂  is the function of  

 

3

3t rˆsin 3 6
ˆ

ˆηθ −≡ η
η ,                            (9) 

i.e. 
ˆ(sin 3 )ˆ ˆ=m m ηθ .                                 (10) 

The simplest equation of m̂  fulfilling the convexity of yield surface is given as follows (Hashiguchi, 
2002): 

6 sin14ˆ = )ˆ)( sin (8 sin3 3
c

c
m

η

φ
φ θ− −

.                         (11) 

φc is the angle of internal friction describing the inclination of critical state line in the (p, *σ ) plane for 
the triaxial compression.. 

The rotation of the central axis of yield surface can be 
described by Eq. (6) which corresponds to the translation of 
the axis of yield surface in metals as interpreted by Hashiguchi 
(2001). However, the rotation of yield surface around the 
central axis cannot be described by Eq. (6), while it is not 
necessary for metals the yield surface of which has a circular 
section in the π-plane. 

A more generalized anisotropy of soils is given 
extending the function m̂  in Eq. (10) so that the yield surface 
rotates also around the central axis, describing the influence of 
the Lode’s angle, as illustrated in Fig. 1 and it can be realized 
simply by replacing ˆ ˆ to η η ψθ θ −  in the function m̂ , i.e.  

 
ˆ{sin ( )}ˆ ˆ 3=m m η ψθ − ,                (12) 

where ψ ( (0 / 6)ψ π≤ ≤  is the material constant describing 
the anisotropy. 
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Fig. 1. Anisotropic yield surface of soils
in the π-plane.
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