# 貯水池の熱塩循環におよぼす深層曝気の影響

| 神戸大学大学院 | 学生員 | ○酒谷 | 祐輔  |
|---------|-----|-----|-----|
| 神戸大学工学部 | 正会員 | 道奥  | 康治  |
| 神戸大学大学院 | 学生員 | 西口  | 祐輝  |
| 神戸大学大学院 | 学生員 | 佐々フ | 卞茂太 |

#### 1. はじめに

富栄養化が進行した貯水池においては深水層が貧酸素化し、様々な水質障害が生ずる. 受熱期に貧酸素層が 拡大すると広範囲の湖底潤辺から塩分が溶出し、周囲水の比重が増加して発生する密度流は、塩分とともに熱 を底層へ輸送する<sup>1)</sup>. 本研究では、深層曝気により、貧酸素水を縮小させ熱塩プルームの発生抑制する水質 浄化の効果を水質モデル解析によって考察する.

#### 2. 熱塩プルームモデル

熱塩プルームによる底層への熱塩輸送現象を以下のようにモデ ル化した<sup>2)</sup>. 溶存酸素濃度 DO が 2.0mg/l 以下になると, プルーム が発生するとみなす. 図-1,2 のように, 底泥からの塩分溶出, 周 囲水からの水温・体積・各水質項目の連行を考慮して, プルームの 熱塩輸送を再現し, 底層への汚染物質の滞留, 逆転水温成層の形成 など諸現象との関連性を検討する.

#### 3. 曝気循環混合モデル

図-3 のように、気液混相の気泡噴流を気相(空気)と液相(連 行水)に分けて考え、高さ  $z_j$ における気相の流量を  $Q_{aj}$ 、液相の流 量を  $Q_{pj}$ とする.また、第 j 層において、気泡噴流(直径  $D_j$ )へ取 り込まれる周囲水の流量を $\Delta Q_{pj}$ 、気泡噴流から周囲水へとけ込む空 気量(曝気量=溶解流量)を  $Q_{dj}$ 、密度、水質濃度を $(\rho_j, C_{ij})$ とする. 気 泡 噴 流 による 第 j 層 での 浮力フラックス  $B_j$  は  $B_j = gQ_{aj-1} - g(\rho_{pj-1} - \rho_{j-1})/\rho_{j-1} \cdot Q_{pj-1}$ である.ここで、 $\rho_j$ は貯水池第 j 層の 密度、 $\rho_{pj}$ は気泡噴流の液層の密度である.また、この時  $B_j$ が負に



図-1 熱塩プルームモデル



図-2 塩分溶出

転じると、プルームが水平に貫入する. 第j層における水圧を $p_j$ 、 $P_{air}$ を大気圧とすれば、第j層での気相流量  $Q_{aj} は_{Q_{aj}} = (P_{j-1}/P_j)^{0,71} Q_{aj-1} - Q_{dj}$ で表される. 気泡噴流の液相は第j層毎に周囲水

から $\Delta Q_{pj}$ だけ連行される.よって、 $Q_{pj}$  ( $\rho_{pj}$ ,  $C_{pi,j}$ )だけの質量、物質量が第 j 層へ加わる.また、第 j 層の酸素溶解流量  $Q_{dj}$ は、溶存酸素 DO の収支式に 考慮され、[気-液境界面の表面積] × [気泡個数] × [気泡の溶解速度] とし、 $Q_{dj}=4\pi d_j N_j v_{wj}$ で表わす.ここで、気泡の溶解速度は  $v_{wj}$ 、気泡の平均 直径は  $d_j$ 、気泡個数は  $N_j$ とする.

# 4. 熱塩輸送量の算定

(1) 無次元流量 Q'P

熱塩プルームの流量  $Q'_{P}$  (無次元表示) は著者らの理論 <sup>3)</sup>に基づいて  $Q'_{P}$  = tan $\beta \cdot \delta'_{P}^{2} \cdot u'_{P}$  で表される . ここで、 $\beta$  はプルームを三角形断面と考えた 場合の最深部角度である. さらに層厚 $\delta'_{P}$ , 流速  $u'_{P}$  は $\delta'_{P}$ =3.2 $s'^{1/5}$ ,  $u'_{P}$ =0.39 $s'^{3/5}$ 

キーワード:熱塩プルーム,深層曝気,熱塩輸送量

連絡先:〒657-8501 神戸市灘区六甲台町1-1 Phone: (078)803-6056, FAX: (078)803-6069



で表され,s'は無次元流程距離である.

### (2) 総熱輸送量Θ<sub>T</sub>

プルームが有する熱エネルギーの指標としてプルームの水温  $T_{\rm P}$  と貯 水池第1層(底層)の水温  $T_{\rm I}$ との差( $T_{\rm P}$ - $T_{\rm I}$ )をとり、 $Q'_{\rm P}$ を乗じてプ ルームの熱輸送量を計る指標とする.よって総熱輸送量 $\Theta_{\rm T}$ は $\Theta_{\rm T}$ =  $Q'_{\rm P}(T_{\rm P}$ - $T_{\rm I}$ )で表される.図-4に2002年における総熱輸送量 $\Theta_{\rm T}$ (計算 値)と水温(計算値)の季節変化を示す.

(4) 塩分輸送量φs

熱塩プルームによる塩分輸送量はプルーム底層(第1層)との塩分濃 度差( $S_{P}$ - $S_{1}$ )と $Q_{P}$ 'との積 $\phi_{S}$ によって, $\phi_{S} = Q'_{P}(S_{P}$ - $S_{1}$ )のように定義する. 図-5 に 2002 年における塩分輸送量 $\phi_{S}$ (計算値)と塩分(計算値)の季 節変化を示す.

### 5. 解析結果

図-6 において,曝気循環を考慮することにより水温構造の変化が再 現できている.また,底層付近の貧酸素領域の縮小が再現できている. 同様に,図-4,5 において,熱塩プルームの発生標高が低くなるととも に,熱塩プルームによる底層への熱塩輸送量が減少している.このこ とから溶存酸素量の制御と熱塩輸送量の関係を確認できる. <参考文献>

1) 道奥・神田・石川:土木学会論文集 No.740/II-64,2003 年
2) 道奥・松尾・香川・斉藤:水工学論文集,第47巻,2003 年

3) 道奥・藤田・高橋・藪本:水工学論文集,第45巻,2001年





図-5 塩分輸送量(2002年)



図-6 水温, 溶存酸素の季節変化 (S ダム 2002 年)