衛星画像及び衛星高度計を用いたアフリカ大陸のダム貯水量推定

山梨大学大学院	学生員	平野順子
山梨大学	正会員	馬籠 純
JR 東日本		吉雄忠敬
山梨大学	正会員	竹内邦良
山梨大学	正会員	石平博

1.目的

現在,地球上には堤高15m以上の大規模ダムだけ でも約45000以上も運用されており、これら大規模 ダム貯水池の効率運用ならびに環境影響評価のため には,貯水量の季節変化ならびに年々変化の広域的 なモニタリングが必要である.にもかかわらず,現 状では,貯水量に関する情報を十分に得ることがで きない場合も多い.本研究では、アフリカ大陸の大 規模貯水池を対象として、現在利用可能な衛星情報 からのダム貯水量モニタリングの実現可能性につい て検討するとともに、これら大規模貯水池における 貯水量の長期変化傾向の抽出を行った。

2.使用データ

本研究では、衛星画像として TERRA/MODIS の Surface Reflectance 8-Day L3 Global 500mを使用した. 期間は2000年10月~2002年12月までであり、バン ド5(1230-1250 nm)データから, 閾値処理により貯 水池の湛水面積を算出した.また,衛星高度計デー タとして, TOPEX/POSEIDON 衛星の MGDR-B デー タ(1992 年 10 月から 2002 年 8 月)を用いた. TOPEX/POSEIDON 衛星は約10日の周期で同一地点 を観測でき、そのサンプリング間隔は軌道方向に約6 km, 軌道間隔は赤道において約 315 km である.本 研究では,各貯水池の水域内に入る高度計観測点に おける水位の平均値を求め,これを貯水位とした. さらに、貯水池の位置を特定するために、平野ほか (2003)のグローバルダムデータベースを用いた。この データベースには、世界の大規模貯水池(13,382 地点) の位置(緯度,経度)、貯水容量、湛水面積などの情報 が収録されており、それらのデータは GIS により地 図情報とリンクされている。本研究では、その中か らアフリカ大陸に位置する1207 貯水池を抽出すると

ともに、特に大規模な貯水池 90 個に対して水面形状 のポリゴンデータを付加して以下の解析に用いた。 これらに加え、貯水池上流域の降水量を把握するた めに、CRU2.0 の降水データを用いた。

3.解析手法

1)衛星による計測可能な貯水量の特定

先に述べた貯水池の水面形状ポリゴンと TOPEX/ POSEIDON のデータサンプリングポイントとをオー バーレイさせることにより、TOPEX/POSEIDON で貯 水位が観測可能な貯水池を特定する。

2) 貯水量変化の算定方法

Magome *et al.* (2003) の手法により、衛星画像なら びに衛星高度計データからに貯水量を推定する。こ の手法では、まず衛星高度計と衛星画像の両方が得 られている期間(2000 年 10 月 ~ 2002 年 12 月)におい て、貯水池の貯水位Hと湛水面積Aの関係(H-A曲線: A= H)を求める.このH-A関係より、貯水量変化 dVは以下のように求められる。

$$dV = \int_{H=H_0}^{H_1} A(H) dH = \int_{H=H_0}^{H_1} \alpha H^{\beta} dH$$
 (1)

ここで, , はH-A曲線の係数,H₀は基準水位, H₁は衛星高度計により観測される水位(m)である.

キーワード 貯水池,衛星画像,衛星高度計,衛星モニタリング 連絡先 〒400-8511 山梨県甲府市武田 4-3-11 山梨大学大学院医学工学総合研究部 石平 博 TEL 055-220-8602

図-2 貯水量推定の対象貯水池

4.解析結果

1) ダム貯水量モニタリングの実現可能性

グローバルダムデータベースから抽出したアフリ カ大陸の貯水池は 1,207 個(貯水容量:約 30,652km³、 湛水面積:約 213,960km²)であるが、その中の水面 形状のポリゴンデータを付加した 90 個 (貯水容量: 約 29,819km³、湛水面積:約 171,172km²)のうち、 TOPEX/POSEIDONのデータサンプリングポイント と重なる貯水池は、22個(貯水容量:約29,775km3、 湛水面積:約169,217km2)であった。水面形状のポ リゴンを付加した 90 貯水池以外は、水面面積が小さ く衛星高度計による水位観測は困難と考えられるこ とから、アフリカ大陸においては、衛星高度計によ リ監視可能な貯水池数は、全貯水池数のうち約1.8% (22/1207)といえる。しかしながら、貯水容量でみる と、アフリカの全貯水容量 30,652km³のうち 29,775km3(約 97.1%)は衛星により、その季節 / 年々 変化を監視することが可能である。このように、大 陸規模の水循環に顕著な影響を及ぼすような極めて 大きな貯水池については、衛星監視が可能であるこ とが明らかとなった。

2) 貯水量の季節 / 年々変動

図 - 3 は、高度計により貯水位が観測可能と判断さ れた 22 個の貯水池の中から抽出した 12 個の貯水池 (図 - 2)を対象として貯水量変化(1992~2002 年,月単 位)を推定した結果である。基本的にはどのダムも雨 季の流入を乾季に放流しているため、季節的な貯水 量の変化が見られる。また、このような季節変動だ けでなく、貯水量の年々変化も見られ、またその変 化は貯水池ごとに大きく異なっている。この年々変 動の要因については様々なものが考えられるが、貯 水池上流の周水域が同じ(似たような)気候区に属す る場合に、比較的類似した年々変動傾向を示すこと が確認された。

5.まとめ

アフリカ大陸の大規模ダムを対象として、衛星観 測による長期・連続的な貯水量の監視の実現可能性 について検討した。その結果、大陸規模の水循環に 顕著な影響を及ぼすような貯水池水量の季節・年々 変化のモニタリング把握が可能であることが示され た。今回用いた手法は,衛星データのみから貯水量 を推定するものであり,十分な地上観測データが無 い地域を含む,広域水資源の総合的な管理・運用に 大きく寄与するものと期待される.

