溶質移動過程の経路依存性に関する実験と数値シミュレーション

地盤調査事務所	正会員	木下 孝介
法政大学大学院	学生会員	小松 義隆
法政大学工学部	正会員	岡泰道

1.目的

筆者らは,これまで,鉛直カラム実験結果に対する移 流分散方程式(従来型および two-region model)の最適 化により,砂質土壌中の移流分散パラメータの推定を試 みてきた¹⁾.これらの結果から,微視的な流れの不均一 性が推察された.そこで,均一土壌中で生じる溶質移動 現象の経路依存性を検討することを目的として,2次元 飽和溶質移動実験を行い,各モデルの適用性の検証な らびにそれに付随するパラメータの推定を行った.

2.2次元溶質移動実験装置の概要と実験方法

2次元溶質移動実験装置(図1)は,降雨装置,実験砂 槽,排水装置から構成される.降雨装置は,定水位装置 により定常降雨の設定が可能であり,内部の残留空気を 排除するために供給部にフック状の針が取り付けられて いる.実験砂槽には EC センサ,土壌水分センサおよび 温度センサを埋設した(図2).また,降雨装置ならびに排 水装置にも EC センサを取り付けた.各センサの測定値 はデータロガーに記録される.土壌試料には豊浦標準 砂(平均粒径 0.196mm)を用い,水締め方式により実験 砂槽に充填した.溶質としては,NaClを使用した.

実験方法は以下のとおりである.まず,土壌層全体を 飽和させた後に,飽和状態が維持されるような様々な降 雨強度を設定して実験を行った.いずれの実験におい ても流れの定常性を確認後,供給水を NaCl 溶液に切り 替え,浸透水ならびに流出水の EC 計測を開始するとい う手順をとる.流出水と供給水の EC がほぼ等しくなった 後,計測を終了する.

3.実験結果と考察

降雨強度を 90.8(mm/hr)に設定したときの各測定位置 における相対濃度の時間的変化を図 3 に示す.各測定 深度での実測破過曲線の形状の相違は, fingering 現象 ならびに tailing 現象などの, 溶質移動過程の経路依存 性に起因すると推察される.本稿では以下この結果を解 析対象とした.

図1 2次元溶質移動実験装置

キーワード 2次元溶質移動実験,溶質移動モデル,経路依存性,分散長,REV
 連絡先 〒184-8584 東京都小金井市梶野町 3-7-2 法政大学工学部 TEL 042-387-6278

4.移流分散パラメータの推定

各測定位置における移流分散パラメータの分布特性 を評価するために,流れは鉛直 1 次元,かつ横分散の 影響は無視できると仮定した.

(1) 溶質移動モデル

非吸着性物質の土壌内での挙動を示す溶質移動 モデルとして次のような移流分散方程式がある.

$$\frac{\partial C}{\partial t} + u' \frac{\partial C}{\partial x} = D \frac{\partial^2 C}{\partial x^2} \qquad \dots (1)$$

ここに, C:相対濃度, u':実流速(m/s), D:分散係数 (m²/s)である.また tailing 現象を考慮する場合には,以 下の two-region model²⁾が提案されている.

$$\theta_m \frac{\partial C_m}{\partial t} + \theta_{im} \frac{\partial C_{im}}{\partial t} = \theta_m D \frac{\partial^2 C_m}{\partial x^2} - u' \theta_m \frac{\partial C_m}{\partial x} \dots (2)$$
$$\theta_{im} \frac{\partial C_{im}}{\partial t} = \alpha (C_m - C_{im})$$

ここに, C_m : 可動水の溶質濃度, C_{im} : 不動水の溶質濃度, θ_{im} : 可動水領域の体積含水率, θ_{im} : 不動水領域の体 積含水率, α :物質移動係数(s⁻¹), である. さらに, 土壌 水流れの非一様性を考慮すると, 次のようになる³⁾.

$$\theta_{im} \frac{\partial C_{im}}{\partial t} = \alpha (C_m - C_{im})$$

$$\theta_m \frac{\partial C_m}{\partial t} + \theta_m u'_m \frac{\partial C_m}{\partial x} \qquad \dots (3)$$

$$= \theta_m D_m \frac{\partial^2 C_m}{\partial x^2} - \alpha (C_m - C_{im}) + \beta (C_r - C_m)$$

$$\theta_r \frac{\partial C_r}{\partial t} + \theta_r u'_r \frac{\partial}{\partial x} C_r = \theta_r D_r \frac{\partial^2 C_m}{\partial x^2} - \beta (C_r - C_m)$$

ここに,*C_j*:成分*j*の溶質濃度,*θ_j*:成分*j*の体積含水率, *u'_j*:実流速(m/s),*D_j*:成分*j*の分散係数(m²/s),*α*:不動 水と緩流水との間の物質移動係数(s⁻¹),*β*:緩流水と急 流水との間の物質移動係数(s⁻¹)である.なお,添字 *im*, *m*,*r*はそれぞれ不動水,緩流水,急流水を表している. 以後,(1),(2),(3)式をぞれぞれ1成分モデル,2成分モ デル,3成分モデルと呼ぶ.

(2) 推定方法

各センサの実験結果に上述の各モデルを当てはめ, 最適化により移流分散パラメータを推定した.なお,ここ では,1~3成分モデルによる計算結果のうち,実測破過 曲線と最も良い適合性を示したモデルを「適合モデル」 とした.なお,複数のモデルが同程度の良い適合性を示 した場合には,より簡単なモデルを適合モデルとする.

(3) 推定結果

図4に測定点 EC5 における相対濃度変化の実験値と 計算値を示す.この例では 3 成分モデルを用いた場合 に実験値と解析値が最も適合した.他の測定位置にお いても,同様にして適合モデルを求めた(表 1).

4.溶質移動の経路依存性に関する検討

次に,パラメータの空間的分布特性を各測定位置で の推定値から検討する.流れ領域の流路内での分散長 を次式から算出する.ただし,適合モデルが3成分モデ ルの場合には,流れの主成分を形成する領域に対して 求めた(表1).

$$D = \alpha_L u' + D_M \qquad \dots (4)$$

ここに, α_L :分散長(m), D_M :分子拡散係数(m²/s)である. 得られた分散長は, $1.95 \times 10^{-4} \sim 2.71 \times 10^{-4}$ (m)の範囲 にばらついているが,平均値 2.30×10^{-4} (m)は既往の研 究⁴⁾にほぼ見合う値を示した.これらの結果から,溶質移 動 過 程 の 経 路 依 存 性 に よる 実 験 砂 層 内 で の REV(representative elementary value)の変動が伺える. しかし,今回は測定位置ごとの検討結果の解釈にとどま っているため,今後流れの領域全体を対象としたモデル を用いた評価が必要である.

図4 移流分散パラメータの推定結果

表1 各測定深度にける適合モデルと分散長

EC No.	1	2	3	4	5	ó	7	8
モデル上の成分数	2	2	3	2	2	2	2	3
$\sigma_{L} = (\times 10^{-4} \text{m})$	2.71	2.27	2.65	2.44	2.11	1.95	2.17	2.13

参考文献

1) 木下ら, 土木学会関東支部, , 2004.

2) van Genuchten et al., Soil Sci. Soc. Am. J., Vol.40, No.4, pp.473-480, 1976.

3) 堀内ら,土木学会論文集,No.573, -4,pp.61-70, 1997.

4) 福井ら,土木学会論文報告集,No.246,pp.73-82, 1976.