# ひび割れを考慮した合成桁の有効幅の有限要素解析

川田工業株式会社 University of Stuttgart University of Stuttgart

正会員 Institute of Structural Design Institute of Structural Design ○中島 星佳<sup>\*</sup> Prof. Dr. -Ing. Ulrike KUHLMANN<sup>\*\*</sup> Dipl. -Ing. Andreas RIEG<sup>\*\*</sup>

## 1. はじめに

道路橋示方書<sup>1)</sup>やEurocode 4<sup>2)</sup>に規定された有効幅は、図-1(a)のように、設計荷重においてコンクリート床版 は、全圧縮状態と想定されているために、コンクリート床版の分担曲げモーメントは無視できるとしている。一 方、図-1(b)のように、桁高が低い桁のコンクリート床版の分担曲げモーメントは、比較的大きく、さらに引張応

力も発生することから、これ らの算定は、有効幅の算出に 重要なものとなってくると考 えられる。そこで、桁高が低 い桁に対し、Microplane model <sup>3)</sup>を用いた3次元非線形有限 要素解析を行い有効幅に及ぼ す影響を調査した<sup>4)</sup>。ここに その一部を報告する。



### 2. 解析手法

有限要素解析には、Stuttgart 大学、建設材料研究室 (Institute of Construction Material) にて開発された MASA<sup>®</sup> (Macroscopic Space Analysis)というソフトを用いた。これは、図-2 (a)~(c)のように、ソリッドの1 積分点において、正 24 面体が Microplane により構成されている<sup>3),4)</sup>。この Microplane モデルを用いることにより、コンクリート、鋼、および頭付きスタッドのモデルを非線形にて行うことが可能である。一例として、コンクリートの FE モデルを図-3 に示す。なお、鉄筋は2 次元の棒要素にてモデル化を行った。



### 3. 解析モデル

解析モデルは、図-1(a) に示すような一般的な断面 (タイプ 1)、およびに図-1(b) に示すような桁高が低い断面 (タイプ 2) となるような 2 種類の断面を任意に選定した<sup>5),6)</sup>。それぞれの 断面寸法を図-4、5 に示す。なお、タイプ 1 の材料定数は、コ ンクリート圧縮強度 33N/mm<sup>2</sup>、鋼の降伏強度 303N/mm<sup>2</sup>、終局 強度 447N/mm<sup>2</sup>であり、タイプ 2 がコンクリート圧縮強度

Keywords: 合成桁、有効幅

\*〒114-8562 東京都北区滝野川 1-3-11, seika.nakajima@kawada.co.jp



TEL:03-3915-3411, FAX:03-3915-3421 TEL:+49(0)711-685-6238, FAX:+49(0)711-685-6236

<sup>\*\*</sup> Pfaffenwaldring 7, 70569 Stuttgart Germany , secretariat@ke.uni-stuttgart.de

37N/mm<sup>2</sup>、鋼の降伏強度 270N/mm<sup>2</sup>、終局強度 389N/mm<sup>2</sup>とした。支間長は、タイプ1が 5.2m、タイプ2 が 3.9 mとした。また、FE モデルは左右対称のため、1/4 のみを作成した。モデルは、両端単純支持で、荷重は、支間 中央に集中荷重を載荷となっている。なお、選定モデルの都合上、タイプ1については完全合成、タイプ2 は弾 性合成となっている。

#### 4. パラメーター解析

コンクリート床版の幅、および、厚さが有効幅に及ぼす影響 を調べるために、上述の解析モデルを基として、床版の寸法を 幅方向、および、厚さ方向に変化させた。床版幅方向には b/L が 0.08、0.12、0.15、0.25、0.5、1.0 となるように、また、床版 厚さ方向には、基の寸法の 2、および 3 倍となるような寸法を 選定した。図-6 に床版幅の床版幅を変化させたときの有効幅の 変化を示す。図-6 より、どちらのタイプについても有効幅は、 b/L が増加するとともに徐々に減少しているが、タイプ 2 のものがタ イプ 1 のものより全体的に上回っていることがわかる。これは、コン クリート床版にひび割れが入り、それにより応力再分配が起こってい るからと考えられる。応力再分配により、 $\sigma_{max}$ は減少し、全体的に見 ると分配前より均一化されたような応力分布となるために有効幅が増 加すると考えられる。また、b/L が大きくなるにつれて規準と解析値 が離れていくのは、規準では考慮されていなコンクリートの分担曲げ モーメントが影響を及ぼしていると考えられる。



図-6 有効幅の b/L による変化

表-1 床版厚変化と有効幅(ケース 1)

| h b/L | 0.08 | 0.5 |
|-------|------|-----|
| 120mm | 89%  | 42% |
| 240mm | 88%  | 53% |
| 360mm | 88%  | 61% |
|       |      |     |

表-2 床版厚変化と有効幅(ケース 2)

| h 0/L | 0.06 | 0.26 |
|-------|------|------|
| 120mm | 96%  | 91%  |
| 240mm | 94%  | 97%  |
| 360mm | 93%  | 97%  |

つづいて、床版厚を変化させたときの有効幅のケース 1、およびケ

ース2を表-1、および表-2に示す。これにより、ケース1のb/L=0.08、およびケース2については、有効幅が100% に近い値であったために床版厚の変化による影響があまり見られなかった。一方、ケース1のb/L=0.5 について は、床版厚の増加に伴う影響が見られた。しかし、床版幅を変化させた時ほどの大幅な変化は見られなかった。

#### 5. まとめ

ひび割れを考慮した合成桁の有効幅に関し、有限要素解析を行った結果、以下のようなことが云える。

床版幅の増加により、有効幅は減少するが、Eurocode 4 や道路橋示方書に定められた値を大幅に上回った。これは、床版のひび割れによる応力再分配によるもの、および、Eurocode 4 や道路橋示方書における有効幅の算定の際、考慮されていないコンクリート床版の分担断面力の影響が原因と考えられる。また、有効幅は、床版厚より床版幅が支配的な影響を及ぼすことが分かった。今後は、有効幅に影響する種々の要因を定量的に評価することが必要であると考えられる。

#### 謝辞

本研究は、ドイツ・Stuttgart 大学 COMMAS (Computational Mechanics of Materials and Structures)の工学修士コース (International Master of Science)の修士論文として、ドイツ学術交流会 DAAD (Deutscher Akademischer Austausch Dienst)の 援助を受け行われた。ここに記して感謝の意を表します。

#### 参考文献

1)(社)日本道路協会:道路橋示方書·同解説 I 共通編, II 鋼橋編, 丸善 1996.12.

- 2) CEN:ENV 1994-2, Eurocode 4, Design of composite steel and concrete structures Part2:Bridges, 1997. (In English)
- Ozbolt, J.: MASA 3, Finite element program for 3D nonlinear analysis structures, MASA Manual, Institute for Construction Materials, University of Stuttgart, 2002. (In English)
- 4) U.Kuhlmann, A.Rieg, S.Nakajima : Numerical Studies on Effective Widths of Composite Girders Considering Cracking Behavior, 5<sup>th</sup> Japanese-German Joint Symposium on Steel and Composite Bridges, 2003. 9. (In English)

5)中島星佳:スタッドをグループ配置した合成桁の力学性状,大阪工業大学大学院修士論文,2001.3.

6) Mele, M.; Puhali, R.: Experimental analysis of cold-formed shear connectors in steel-concrete composite beams, Costruzioni Metalliche, No. 5, 1985, pp. 239-302. (In English)