中空式二重鋼管・コンクリート合成部材の純曲げ実験

神戸市立高専 正 会 員 上中宏二郎,豊橋技術科学大学 学 生 員 西田 康人 大阪市立大学大学院 正 会 員 鬼頭 宏明,大阪工業大学 フェロー 園田恵一郎

1.はじめに

中空式二重鋼管・コンクリート合成部材¹⁾(以下,DCFT とする)は,2つの径の異なる鋼管を同心円上に配置し, その間にコンクリートを充填するものである.したがっ て,従来のコンクリート充填鋼管部材²⁾(以下,CFT と する)と比較して,軽量となる利点を有する.

著者らは, DCFT の中心圧縮実験を行い³⁾, DCFT 特有 の変数である内径・外径比が中心圧縮特性に与える影響 について検討した.そこで,本研究では内径・外形比(D_i / D_o)を変化させた4体のDCFTの純曲げ実験を行い, D_i / D_o が純曲げ特性に与える影響について実験的に検討 することを目的としている.

2.実験方法

供試体の形状は供試体の高さ(H) 450mm,外鋼管径 (D_o) 160mm に,外鋼管厚(t_o) および内鋼管厚(t_i) は 公称 1mm にそれぞれ固定し,内鋼管径(D_i)を 0(CFT), 37.5, 75.0, 112.5mm に変化させている.

載荷方法は,図-1に示すように供試体両端をボルトを 載荷治具に固定し,載荷はりより治具に荷重を与えた. これにより,図-2に示すように供試体のみに純曲げモー メントMを作用させることができる.また,変位の測定 は,供試体中央および中央から部材軸方向に160mm離れ た箇所の合計3箇所で行った.なお,鋼管ひずみは,周 方向(*ε*₀)および部材軸方向(*ε*₂)を測定する二軸ひずみゲー ジを内・外鋼管に計24箇所貼付し測定した.

3.実験結果及び考察

表-1 に実験結果一覧を示す.ここで *M_u*とは図-3 に示 すようにコンクリートの引張は無視し,内鋼管および外 鋼管の応力は,降伏していると仮定して算定したもので, (1)式のとおりとなる.

$$M_{u} = 4f_{sy}\cos\alpha(t_{o}r_{so}^{2} + t_{i}r_{si}^{2}) + \frac{2}{3}f_{c}(r_{so}^{3} - r_{si}^{3})\cos^{3}\alpha$$
(1)

図-2 DCFT に作用する曲げモーメント(H=450mm,D_o=160mm)

図-3 DCFTの断面と終局の応力状態

(a)m10-000 (b)m10-375 写真-1 破壊形式

キーワード:合成構造,2重鋼管,純曲げ実験,内径・外径比 連絡先:651-2194 神戸市西区学園東町 8-3, Phone & Fax: 078-795-3540

1-3	713
-----	-----

		Steel Tube					Concrete		Est.	Exp.	Ratio	
#	Tag	D _o	D_i	$\frac{D_i}{D_o}$	t	E_s	f_y	E_{c}	f_c	[2] <i>M</i> _u	[1] M _{exp}	[1] [2]
		(mm)	(mm)		(mm)	(GPa)	(MPa)	(GPa)	(MPa)	(kN m)	(kN m)	
1	m10-000	160	0.0	0.00	0.8	250	286	24.2	25.7	11.9	14.6	1.23
2	m10-375	160	37.5	0.23	0.8	250	286	24.2	25.7	12.5	15.5	1.24
3	m10-750	160	75.0	0.47	0.8	250	286	24.2	25.7	13.3	15.3	1.15
4	m10-1125	160	112.5	0.70	0.8	250	286	24.2	25.7	13.6	13.7	1.01

図-2 変形特性

ここで, f_{sy} : 内外鋼管の降伏強度, r_{si} , r_{so} : 内外鋼管の半径 ($D_o/2, D_i/2$), f_c : コンクリート強度, α : sin⁻¹(($1 - x/r_{si}$)) をそれぞれ示す.

(1)破壊形式

破壊状況をそれぞれ写真-1(a),(b)に示す.これらより,得られた破壊形式は,鋼管底面では引張降伏後破断し,圧縮領域では座屈するものであった.また,内鋼管においては,引張領域で降伏していた.

(2)変形特性

図-2 に 4 体の供試体の作用曲げモーメント(M)と載荷 点中央の変位(∂)の関係を示す.同図より,内径・外径比 の変化に関係なく,5mm までの変形では DCFT がほぼ CFT と同等の初期剛性を示している.これは,中空断面 となっても断面剛性(EI)が低下していないためであると 考えられる.さらに,DCFT の変位 20mm 近傍における 作用曲げモーメントMは, D_i / D_o の変化に関係なくCFT と同等の変形性能が得られていることが分かる.

(3)純曲げ強度

図-3 に本実験で得られた中心圧縮強度(M_{exp})と式(1)の 算定値を比較したものを示す.4体の供試体から得られた曲げ強度は,式(1)を用いて M_{exp}/M_u =1.11となり,良好に評価することができる.しかしながら,m10-1125においては,他の供試体と比較して低下する傾向が窺える.

図-3 終局曲げ強度と内径·外径比

4.まとめ

本研究は内径・外径比(D_i/D_o)が異なる4体のDCFT 供試体において,上記パラメーターが純曲げ特性に与え る影響について実験的に検討したものである.結論づけ られる事項を以下に列記する.

- (1) 得られた破壊形式は,鋼管下端が引張降伏し,圧縮
 側が座屈する曲げ破壊であった.また,内鋼管は引
 張領域が降伏していた.
- (2) DCFT の曲げの初期剛性は CFT と同等のものが得られた.また,変形性能は CFT のそれと比較してほぼ等しいものであり,十分な変形性能を保持していた.
- (3) DCFT の純曲げ強度は , (1)式を用いて良好に評価できた .

謝辞:載荷実験の実施に当たっては,当時神戸市立工業高等専 門学校都市工学科5年に在籍された後藤誠志,ならびに橋本和 朗各氏にご協力をいただいた.ここに記して感謝の意を表しま す.

参考文献

- 1) Wei,S. et. al.: Jour. of Struct. Eng., American Society of Civil Engineers, Vol. 121, No. 12, pp. 1806-1814, December, 1995
- 2) 日本建築学会:鉄骨鉄筋コンクリート構造計算基準・同解 説,2001.
- 3) 上中他:第5回複合構造の活用に関するシンポジウム講演論 文集,土木学会, pp. 105-110, 2003.