PC 外ケーブル定着体の耐荷性能実験と解析

九州大学	学生会員	笠	裕一郎	オリエンタル建設	段(株) 正会員	小嶺啓	各蔵
九州大学	正会員	黄	玲	九州大学	フェロ - 会員	彦坂	熙

1.目的

外ケーブル PC 橋の定着体には、支持するプレストレス力に対する十分な耐荷性能が要求される.しかし、 定着装置の性能は、定着具・定着部コンクリート・補強筋などが一体となって初めて発揮され、一般的な性 能を記述するのは困難で、実験と解析による確認が必要である.そこで本研究では、非線形 FEM 解析によ り定着装置の性能を把握することを目的として、疲労試験と静的破壊試験が行われた定着体¹⁾について、内 部に配置するスパイラル筋、横補強筋およびアンカープレートの効果を検討した.

2.載荷試験

図-1 に標準供試体形状および配筋要領を,表-1,表-2 に供 試体の材料特性を示す.PC 定着工法としては OBC(Oriental Bearing Cone)工法を選定し,鉄筋径は,スパイラル筋を 13,その他は D10,定着具のアンカープレート厚を 19mm とした.疲労試験および静的載荷試験は土木学会基準²⁾(図 -2)のもとに行い,供試体寸法は a=160mm,b=200mm,] = 400mm である.また,スパイラル筋の拘束効果を検討す るため,スパイラル筋を除いた供試体およびアンカープレー ト厚を 25mm に増した供試体の試験も行った。

表-1 鋼材の材料特性

	弾性係数(N/mm ²)	ポアソン比	降伏強度(N/mm ²)
スパイラル筋			235
補強筋	206000	0.3	295
アンカープレート			235.2

表-2 コンクリートの材料特性

<u>弾性係数(N/mm²)</u>ポアソン比 圧縮強度(N/mm²) 引張強度(N/mm²) 30500 0.17 39.0 3.54

3 . F E M 解析

FEM 解析における要素分割モデルを図-3 に示す.本解析で はアンカーディスクはモデル化せず,アンカープレートに載荷 する方法で解析を行い,アンカーディスクの支圧を受ける部分 に等分布載荷を行った.コンクリートとアンカープレートには 8 節点ソリッド要素,鉄筋には2節点トラス要素を用いた.ス パイラル筋は,同心円筒状に分割したコンクリート要素に沿う 多角形螺旋でモデル化した.解析には汎用プログラム Marc2001を使用し,降伏条件として鋼材にはミーゼスの降伏 条件を,コンクリートには同条件を引張り域で修正して適用し た.

図-1 供試体形状および配筋要領

図-3 要素分割モデル

4.解析結果および考察

図-4 にひび割れ発生前の荷重 P = 358kNの 軸方向応力分布(全補強モデル,アンカープレート厚 19mm) キーワード 外ケーブル P C 橋、アンカープレート、拘束効果、定着体 連絡先 〒812-8581 東区箱崎 6-10-1 九州大学工学部建設システム TEL 092-641-1101 を示す.コンクリート側面においてはアンカープレート 側の上縁端から 20~30mm 付近で引張応力が最大とな った.載荷実験においても,縁端から 30mm 位置で最も 大きい数値を示しており,ほぼ解析結果と一致している. 図-5,図-6にアンカープレート厚 19mm 時の補強筋 R3,スパイラル筋S2の荷重-ひずみ曲線を示す(R3, S2の位置は図-1参照)図-5における FEM 解析値は実 験値に近い挙動を示し,また最大荷重値もほぼ等しい. 図-6において,実験値はスパイラル筋の同一断面内側と 外側に添付したひずみゲージの値である.スパイラル筋 は拘束効果による軸力に加えて大きな曲げを受けている が,両者の平均値は引張りひずみとなり,FEM 解析値 とも近い値を示している.

図-7はアンカープレート厚を 25mm に増加したモデ ル,およびプレート厚 19mm でスパイラル筋を除いたモ デルにおける R3 の荷重 - ひずみ曲線を,表-3にそれぞ れの最大荷重を示す.表-3の実験値は,疲労試験後供試 体に対する静的破壊試験によるものである.プレート厚 25mm では,図-8に示すようにアンカープレートの背面 で応力の分散が確認でき,最大荷重も向上している.また, スパイラル筋を除いたモデルでは,ひび割れ発生後に急 激に補強筋のひずみが増加している.このことから,ス パイラル筋の拘束効果が大きいことが確認できる.

	2	支圧板厚 t=25mm	963	1124	
	3	スパイラル筋なし	795	868	
-	1	KI LATA ZA	III INN	UTTO I	4
-				2440	67
				Contraction of the second	
-	: 6		+ +44		
	1				
	1		8		
		V AND INCOMENTS OF		A PARTY NO.	XC

表-3	ひび割れ	.発生荷重	と最大荷重
-----	------	-------	-------

タイプ

標準形

No

最大荷重(kN)

FEM

920

実験値

881

プレート厚 19mm プレート厚 25mm 70-8 X軸方向応力図(アンカープレート背面)

図-6 荷重-ひずみ曲線 (スパイラル筋 (S2))

Ŋープレート背面) 図-7 荷重 - ひずみ曲線(側面補強筋(R3))

参考文献) 1)小嶺・彦坂・江口・吉村:外ケーブルPC橋の定着部の耐久性に関する実験
第12回プレストレストコンクリートの発展に関するシンポジウム論文集 2003年10月
2)土木学会:2002年制定コンクリート標準示方書〔規準編〕土木学会規準