風洞実験とCFD によるタンデム二箱桁断面橋梁の耐風特性の研究

石川島播磨重工業㈱ 正会員 〇杉本高志 石川島播磨重工業㈱ 正会員 黒田眞一 正会員 市東素明

<u>1. 緒言</u>

耐フラッター性の良い超長大橋の断面として、タンデム配 置二箱桁(以下二箱桁)断面¹⁾,また低コスト化という面では、 楕円型底面を持つ一箱桁断面が提案されている.一方,耐 風特性の評価の際,CFDを用いることができれば非常に有 益なツールとなり得るが、一般に二箱桁においてCFDの検 討ではその性状が定量的に捉えることができないとされてい る.本研究の最終目標は、二箱桁の耐風特性を左右する支 配的なメカニズムを把握することであるが、ここでは前段階と して、図1に示す端部を半円形状とした二箱桁(桁幅 B=400mm,桁高 D=40mm)に関して、風洞実験とCFDによる 流れ解析を行い、CFD が二箱桁の耐風検討に適応可能か 検討した.

<u>2. 実験概要</u>

実験では、模型下面側に設置した圧力孔から計測した非 定常圧力とロードセルによる非定常空気力の計測を行った. 加振方向は、たわみ加振とねじれ加振のそれぞれ1自由度 加振である.

3. 計算方法

CFDの解析手法は既報のもの²⁾により,乱流モデルは*k-ω* SSTを用いている.解析格子はH型の背景格子と物体近

傍の O 型格子を組み合わ せる複合格子法を用いおり、 物体周りの O 型格子には 201×35(周×径),背景格 子のH型格子には191×99 (流れ方向×垂直方向)を 用いた.

図2 解析格子

<u>4. 結果と考察</u>

表面圧力データは次式のように整理した. P(t,x) = Q*{Cps(x) + Cpd(x)*cos(2 π ft + Phs(x))} ただし, P(t,x):表面圧力, Q:動圧, Cps(x):静的成分,

キーワード:二箱桁断面,表面圧力,CFD,非定常空気力係数

Cpd(x):動的成分, Phs(x):変位(上昇および頭上げが正とする)に対する位相差, f:加振周波数, である.

たわみ加振の実験および解析結果を図3に示す.ねじれ 加振の結果は掲載していないが,位相分布以外はたわみ加 振の結果と定性的に同じである.

Cps に関して, 上流桁においては, 半円表面上で流れは 加速され, 半円部が終わる付近で圧力は最小となる. その後, 流れが剥離する点まで圧力は回復する. また, 実験では低 Re 数において, 剥離点から約 D/2 下流まで圧力が一定とな る区間が存在し, その後圧力が急激に回復しているが, 解析 ではこの区間が非常に短いことがわかった. 一方, 下流桁に ついては全域にわたって実験と解析値は良く一致している. 上流側に見られる圧力一定区間は表れず, 半円部が終わる 付近において極小値を示し, その後すぐに圧力は回復す る.

Cpd では、上流桁において2つの極大値が存在し、2 つ目 の極大値(以下 2nd peak)はRe数の増加によって上流側に移 動する.この点は剥離バブルの大きさが変動する点である. 剥離バブルの上下流方向の大きさが変動するのは、気流の 相対迎角によると考えられる.たわみ加振の場合、準静的に 考えると相対迎角が刻々と変化し、上昇時には吹下しの迎 角となり、下面側の剥離バブルが下流側に拡大する.

一方,下流桁においては,CFD では前縁部付近で1つめ の極大値を示し,半円部が終わる位置からさらに2つ目の極 大値を示している.1st peak の大きさは,無次元振動数 K(=fB/V,V:風速)=1/10.24 以外は実験値と一致している. しかし2nd peak については,実験においてはほとんど確認で きない.また,Kの減少に伴って値は小さくなり,Kが小さい 場合,両者は一致する.

ここで CFD による可視化を行い,下流桁の極大値生成の メカニズムについて検討した.1st peak は上流桁から放出され る渦が衝突する位置であり,ねじれ加振の場合,運動と同期 して衝突点が半円部に沿うように上下する.渦の移動の際, 流れが直接前縁部に流れ込むことで圧力が増大し,変動成 分が大きくなる.一方,2nd peak は下流桁前縁での剥離渦の

連絡先:横浜市磯子区新中原町1番地 石川島播磨重工業㈱技術開発本部, TEL:045-745-2825, FAX:045-759-2208

発生点と一致しており、剥離渦は頭下げの半周期において、 前縁部下面側から発生していることがわかった.一方,既述 のとおり実験においては、2nd peak がほとんど発生していない が、乱流による剥離渦の生成が抑制されているためと考えら れる.

Phs は、上流桁では再付着位置における位相の遅れを除 けば約-100 度付近に分布し、実験と解析値は良く一致する. これに対し,下流桁の位相は,上流側桁の位相に比べ,位 相が回復しており、-60~-90度に分布することがわかった.

次に下記の式で示される非定常空気力について,直接ロ ードセルによって計測した結果と表面圧力(実験及び解析 値)を積分して得られた結果について比較した.

 $L_{D} = \pi \rho B^{3} \omega^{2} \{ (C_{L,nR} + iC_{L,ni}) \eta / B + (C_{L,\theta R} + iC_{L,\theta i}) \theta \}$

 $M_{D} = \pi \rho B^{4} \omega^{2} \{ (C_{M \eta R} + iC_{M \eta i}) \eta / B + (C_{M \theta R} + iC_{M \theta i}) \theta \}$ ただし、L_D, M_D:単位長非定常揚力、非定常空力モーメント、 B:桁幅, η, θ:たわみ振幅, ねじれ振幅, C:非定常空気力 係数, ρ:空気密度, ω:円振動数, である.

結果を図4に示す.ここで図中の平板理論値は、一つの箱 桁について回転中心を変えた結果を線形重ね合わせとして いる.

図に示すとおり,実験と解析結果は良く一致し、またロード セルの結果と表面圧力積分値とも良く一致しており,精度上 の問題はないようである.既往の研究では、多くの場合二箱 桁において著しく解析精度が落ちるとされているが,本解析 結果は定量的にも十分妥当である.

5. 結言

タンデム配置二箱桁断面に着目し、風洞実験とCFDによ り、空力特性の把握を試みた、得られた知見を以下に示す. ■表面圧力計測とCFDの結果は、下流側桁における2つ目 の変動圧力の極大値を除けば、定量的にも良く一致した. ■ロードセル計測によって得られた非定常空気力係数と計 算結果についても良い一致が見られ,必ずしも二箱桁にお いて解析精度が落ちるわけではないことがわかった.

【参考文献】

02

CL n r

1) 佐藤, 楠原ら: 超長大橋の一様流中におけ耐風性, 第16回風工 学シンポジウム, 2000年12月, pp.351-356

2) Kuroda, S., "Numerical Computations of Unsteady Flows for Airfoils and Non-airfoil Structures," AIAA 2001-2714.

CL n i

図3 たわみ加振時の下面側圧力分布(上:Cps,中:Cpd,下:Phs)