サグ比が異なる自碇式吊床版橋の架設時における幾何学的非線形性

東京都立大学大学院 学生員 羽根 航

三井住友建設 正会員 近藤真一

東京都立大学 フェロー 前田研一・正会員 中村一史

1. まえがき

自碇式吊床版橋は、急峻な渓谷などへの架設時に優位性を発揮する橋梁形式であり、完成後は自碇構造と なることから、架設地点での地盤条件に左右されにくい.近年、この架設方法を利用して巖門園地園路橋が PC 複合トラス歩道橋として建設されている.そこで、本研究では、鉛直支持材を有する自碇式吊床版橋を道 路橋へ適用することを目的として、支間長やサグ比が及ぼす影響、および、有限変位解析に基づく合理的な 設計の可能性について検討を行った.

2. 解析方法と解析モデル

自碇式吊床版橋は、上床版、鋼鉛直支持材、下床版および端部セグメントから構成される.支間長Lを100m、 サグfを8.0mとした試設計例の一般図および断面図を図-1、2に示す.また、架設から完成に至るまで力学 特性が大きく異なることから、架設に応じた解析モデルを図-3のように設定し、表-1の架設ステップ毎に架 設の進捗に従って検討を行った.解析方法については、微小変位解析および有限変位解析を適用した.設計 時に照査するための断面力はSTEP1~7までの断面力を合計したものとし、クリープ、乾燥収縮については 影響が小さいことからここでは省略した.解析パラメータについては、表-2に示すような支間長とサグ比を 設定して比較、検討を行った.なお、各支間長においてサグ比1/12.5を基本モデルとして試設計を行い、サ グ比1/16.7、1/10.0のモデルについては、断面諸元は変えず、サグのみを変化させて検討を行った.

3. 解析結果と考察

解析結果より,着目した断面力に大きな影響を与える架設ステップは,上床版ではSTEP4であり,下床版ではSTEP3であった.特に,STEP3における下床版では幾何学的非線形性の影響が顕著に現れることが確かめられた.したがって,これらの項目に着目した解析結果について以下に示す.

まず,図-4,5に、支間長100mモデルのSTEP4における上床版の軸力図および曲げモーメント図を示す. このSTEP4では,他碇式から自碇式へ構造系が変化することに伴って荷重が橋体より導入される.図-4より, サグ比が小さいほど圧縮軸力が増大すること、また、図-5より、上床版の端部で曲げモーメントの絶対値が

Key Words:自碇式吊床版橋,架設,幾何学的非線形性,サグ

連絡先:〒192-0397 東京都八王子市南大沢1-1 TEL.0426-77-1111 FAX.0426-77-2772

大きくなり、サグ比が大きくなるほど増加することが解る.これらの特徴は、サグ比、支間長別に、上床版

の軸力および曲げモーメントについて比較した図-6,7からも確かめられる. 次に、図-8 に支間長 100m、サグ比 1/12.5 のモデルの STEP3 における下床版の曲げモーメント図を示す. STEP3 は上床版の架設であり、下床版が全荷重を負担するため下床版にとっては最も厳しい状態となる.解 析方法の相違による曲げモーメントを比較すると、微小変位解析では過大に曲げモーメントを評価している ことが解る.図-9 に、支間長、サグ比別に 3/10 点における下床版の曲げモーメントを示すが、支間長が長く なるほど曲げモーメントを過大に評価する傾向が強くなることが解る.試設計において、下床版厚はケーブ ル配置等の制約から最小厚は 400mm となり、支間長によらず一定としている.支間長の伸長に対して、有 限変位解析による曲げモーメントは微増であることから、下床版は軸力が支配的な部材として設計できるこ とが解った、なお、図を略したが、幾何学的非線形性の影響は STEP1~3 における下床版の架設時挙動を除

いてほとんどないことを把握している. 4. **まとめ**

以上のことから,幾何学的な非線形性を考慮すれば、下床版の曲げモーメントを過大に評価することなく, 軸力が支配的な部材として合理的な設計ができること、また、サグ比や支間長が各部材の断面力に及ぼす影響が確かめられた.

参考文献

1) 近藤真一,梶川康男,深田宰史,前田研一:コンクリート曲弦トラス橋の構造特性と道路橋への適用,土木学会論文集, No.753/V-62, pp.107-126, 2004.