1. はじめに
鋼材の品質は年々進歩し、高品質な鋼材が提供されるようになった。このことは、橋梁に従事している技術者の多くが認識しているが、どの程度高品質な鋼材であるのかは明確に知られていない。本報告は、橋梁で使用されている鋼材の機械的性質を調べるため、6鋼種（SM400, SM490Y(SM520), SM570, SMA400W, SMA490W, SMA570W）を対象とし1412枚のミルシートから、引張強度、降伏強度およびシャルピー衝撃値を調べた。また、1970年以前のデータとの比較検討も行い、どの程度鋼材の品質が向上したのかを明らかにした。

2. 調査概要
調査は平成14年7月に実施し、日本橋梁建設協会の溶接技術部会に参加の14社で使用した鋼材を対象とした。本調査では、製鉄会社に拘らず、各橋梁製作会社で近年使用した鋼材を任意に抽出した。

3. 引張強度の調査結果
図-1および表-1に調査結果を示す。引張強度は、全鋼種において平均値で約1割程度基準値より高かった。400材では、SM材（塗装使用鋼材）よりSMA材（裸使用鋼材）の方が若干高い値を示しており、表-1の平均値で見ればスマート400N/mm²程度、SMA材の方が強度は高かった。490材において、引張強度は、SM490YB, SM490YA, SM520C, SM520-TMCの順に強度が高くなっていた。ただし、SM490YとSM520では、基準値では30N/mm²の違いがあるが、実際には平均値で約10N/mm²程度の違いしかなかった。また、SM材とSMA材を比較すると強度はSMA材の方が高かった。

4. 降伏強度の調査結果
図-2および表-1に調査結果を示す。図中の細実線および細点線は、最小自乗法を用いて求めた板厚に対する降伏強度の回帰直線である。また、図中の太点線は、道路橋示方書の基準値を示している。道路橋示方書では、板厚が大きくなることで降伏強度の基準値を低くしているが、図-2の結果が示すように、降伏点一定鋼を除いて、板厚の増加に伴い降伏強度が低下する傾向が伺えた。降伏強度は全鋼種において平均値で約2割程度基準値より高かった。400材では、降伏強度はSM材よりSMA材の方が高く、490N/mm²程度の差異が生じていた。しかし、SM490YBとSM520Cを比較すると、逆に強度は若干小さい値を示しており、引張強度とは異なる結果が示された。また、SMA材とSM材を比較して違いはなかった。

5. シャルピー衝撃値の調査結果
図-3および表-3に調査結果を示す。JISでは、鋼材によって異なるが、シャルピー衝撃値（JIS）47Jとしている。調査結果では、100Jを下回る鋼材はなく、全体的に衝撃値は非常に高い分布を示していた。強度別に比較すれば、400材＜490材＜570材の順に衝撃値は高かった。特に、TMCP鋼の衝撃値が高い。400材では、衝撃値はSM400B＜SM400C＜SMA400C＜SMA400Bの順に高く、SMA材はSM材より衝撃値は高かった。490材では、SM材のSM490YBとSM520Cを比較しても衝撃値に違いはなかった。しかし、SM520C-TMCでは、SM520Cと比較して平均値で約30J高く、300Jを超えるデータも多く見られた。また、SM材は400材と同様、SM材より平均値で約40J高かった。570材は、衝撃値が200Jを下回るデータは少なく、平均値（従来鋼とTMCP鋼を合わせた）ではSM材で294J、SMA材では271Jと高い値を示し、300Jを超えるデータが多かった。特に、SM570-TMCでは平均値は315Jと高い衝撃値であった。表-4は、一宮らが調査した衝撃値における1970年以前のデータを集計したものである。これららの場合の鋼材を比較すると、平均値においてSM570では約60J（SM570-TMCを除く）程度現在の方が高かったが、他の場合の鋼材では、約2倍程度衝撃値が高くなっていた。また、1970年以前では最大値は300Jを超えるデータはなく、さらに、規格を満足しない

キーワード：鋼材、引張強度、降伏強度、シャルピー衝撃値
データも存在していた。以上にように、衝撃値はこの約35年間で格段に向上していると言える。

6. まとめ　現在の鋼材の機械的性質は基準値よりも遙かに高く、高品質な鋼材を使用していると言える。特に、TMCP鋼の品質は格段に高い。引張強度は道路橋示方書で示されている基準強度より平均すれば約1.4倍程度高く、降伏強度は約2.5倍程度高かった。シャルピー衝撃値は、現状では100Jを下回るものではなく、200J以上の鋼板が大半である。1970年以前のデータとの比較では、降伏強度は、若干事の鋼材の方が強度は高かったが、引張強度では大きな違いはなかった。また、衝撃値では、約2.5倍程度シャルピー衝撃値は高かった。すなわち、この約35年間で溶接性という観点からの鋼材の品質は著しく向上していると言える。なお、本研究は、東京工業大学の創造プロジェクト研究の一環として行ったものである。

(参考文献)
1)西村 昭：ミルシート値とチェックテスト値との関係について、JSSC Vol.5、No.38、pp3-26、1969。
2)西村 昭：鋼材の機械的性質のばらつきについて、JSSC Vol.5、No.48、pp68-74、1969。
3)末吉 充、平林泰明、柳沼安俊、下里哲弘、三木千尋：既設構造物の鋼材の年代的な特徴とその溶接性について(その2)、第58回土木学会年次講演会概要集I-485、pp969-970、2003-9