ブレースドリブアーチ橋(千歳橋)の実橋振動試験

大阪市建設局	正会員	○藤谷	健二	松尾・日橋・横河 JV	正会員	永岡	弘
大阪市建設局	正会員	島村	勇次	松尾・日橋・横河 JV	正会員	武藤	和好

1. はじめに

大阪市臨港地域に建設された千歳橋は、トラス形式の片側側径間部を有するブレースドリブアーチ橋という 特徴的な形式の橋梁である¹⁾.本橋は、アーチ橋としては支間長が大きく、それに対して主構間隔が小さいた め、振動しやすい構造である.そこで、千歳橋の振動特性を把握するため、実橋における振動試験を実施した.

千歳橋の位置を図1に,構造一般図を図2に示す.

2. 振動試験の概要

振動試験に先立って,自然風等によって橋梁に生じる常時微動 振動を測定し,実橋の固有周期および固有振動モードを推測した. 振動試験は,橋面上に配置した起振機にて橋体を加振して,応答 から減衰等の振動特性を求めた.

3. 常時微動計測

常時微動計測では、図2に示すα1~α8の8個所にセンサを設置 して橋軸方向,橋軸直角方向および鉛直方向の変位と加速度を各 1時間計測し、卓越振動数と振動モードを求めた.表1に計測結 果を示す.また,設計時に実施した固有値解析から得られた1次, 2次,4次の固有振動モードと、常時微動計測におけるT1,V1, V2の応答値との間にそれぞれ良好な対応が確認された.表1に、 固有値解析結果のうち1~4次固有振動モードの結果を併せて示

図1 千歳橋位置図

キーワード:ブレースドリブアーチ橋,常時微動振動計測,実橋加振試験,固有値解析,対数減衰率 連絡先:〒559-0034 大阪市住之江区南港北1丁目14番16号 大阪市建設局橋梁課 TEL 06-6615-6819 〒590-0977 堺市大浜西町3番地 松尾橋梁株式会社設計部 TEL 072-223-2691 1-435

す.一例として,図3に解析から得られた2次固有振動モードと常時微動応答値(V1)の比較を示す.なお, 今回3次固有振動モードに相当する常時微動応答値は 確認されなかった.

4. 振動試験

振動試験では、常時微動計測にて確認された8つの 卓越振動モードに対して起振機にて加振したのち、自 由振動させた.その際、モード形状に応じて、起振機 を図1のa点~c点に設置した.表3に各加振ケースに おける加振条件及び計測結果を示す.また、自由振動 から得られた対数減衰率を併せて示す.

ねじれ振動において、T1、T2 の対数減衰率は 0.03 以上であったが、T3 では 0.024 であった. たわみ振動 において、V2~V4 では 0.03 以上であるが、V1 では 0.018 となった.

5. 考察

常時微動計測の卓越振動数と加振試験における応答 振動数がほぼ等しく,常時微動計測より橋体の固有振 動数が推測できることが分かった.

常時微動計測で得られた卓越振動数は、固有値解析 結果に比べ 1.2 倍程度であったが、実橋におけるトラ ス構造のアーチリブの剛性

が解析モデルより高かった 等の要因によるものと考え られる.

減衰振動波形から得られ えた対数減衰率は振幅依存 性が認められ,また加振ケー スによって対数減衰率が比 較的小さいモードが見られ た.

謝 辞

本稿の執筆にあたり, 立命 館大学 小林紘士教授よりご 指導をいただきましたこと を記し, 謝意を表します.

参考文献

- 1) 竹居, 横田, 指吸, 明田, 金澤, 宮川: 千歳橋上部工の計画と設計, 橋梁と基礎, 2003.3.
- 2) 扇本,奥村,小林,長澤:ブレースドリブアーチ橋の耐風性に関する風洞実験,土木学会第52回年次学術講演会概要集,1997.9.
- 3) 本州四国連絡橋公団:本州四国連絡橋風洞試験要領(1980)·同解説, 1980.6.

振動モード		常	時微動計	固有値解析		
		卓越 振動数 (Hz)	最大 片振幅 (<i>μ</i> m)	計測点 (方向)	次数	固有 振動数 (Hz)
ねじれ 振動	T1	0.59	295	α 8(y)	1	0.508
	T2	1.6	0.57	α 6(z)		
	T3	2.3	0.056	α 3(z)		
たわみ 振動	V1	0.82	2.9	α 6(z)	2	0.6969
	V2	0.96	4.0	α 6(z)	4	0.7792
	V3	3.1	0.051	α 3(z)		
	V4	4.2	0.024	$\alpha 3(z)$		
	V5	4.7	0.007	α 6(z)		

1) 計測方向: y: 橋軸直角方向, z: 鉛直方向

2) 3 次モード(0.7646Hz)は計測では確認できなかった.

図3 固有値解析と常時微動計測の振動モード図

公 0 派到武禄柏木									
加振 ケース		加振条件				応答	亡效拒桓	対数	
		振動数 加速度		起振機	測	振動数	心合派幅 (出垢症)	減衰率	
		(Hz)	(gal) 位置		点	(Hz)	())以中国)	δ	
ねじれ 振動	T1	0.58	180	c 点	α8	0.56	1.3~0.5 mm	0.030	
							0.5~0.3 mm	0.014	
	T2	1.5	200	c 点	α6	1.5	25~4.0 gal	0.107	
							4.0~1.3 gal	0.015	
	T3	2.3	150	c 点	α3	2.3	7.0~2.5 gal	0.024	
							2.5~1.5 gal	0.016	
たわみ 振動	V1 0.	0.81	150	b 点	α7	0.81	7.5~4.0 mm	0.018	
		0.81	150				4.0~0.3 mm	0.013	
	V2 0.9	0.95	100	a 点	α6	0.95	7.5~1.8 mm	0.049	
		0.75	100				1.8~0.14mm	0.035	
	V3 3.1	200	6 占	a 3	31	53~3.5 gal	0.046		
		5.1	200	で京	us	5.1	3.5~1.2 gal	0.027	
	V4 4.2	150	。 占	cr2	12	45~1.7 gal	0.034		
		4.2	150	て示	us	4.2	1.7~0.8 gal	0.018	
	V5 4.8	18	200	。占	a6	18	60~13 gal	0.097	
		200		uu	4.0	13~2.0 gal	0.034		

十三 舌も言子 旺全 公士 田