鉄道免震用ボルト破断型緩衝ストッパーの振動台実験

京都大学工学研究科 フェロー 家村 浩和 日本鋳造株式会社 正会員 出間 進一・原田 孝志 鉄道総合技術研究所 正会員 池田 学 ・豊岡 亮洋

1. はじめに

鉄道構造物を免震化するにあたっては,鉄道構造物特有 の問題である常時の列車走行性を担保する必要がある.こ のためには,常時・小規模地震においては固定,大規模地 震時には破壊する移動制限装置を免震構造系と組み合わせ る必要がある.本研究では,こうした機能を有する移動制 限装置として,ボルト破断型緩衝ストッパーを開発すると ともに,免震構造と組み合わせた場合の性能を振動台実験 により検証した.

2. ボルト破断型緩衝ストッパー

免震鉄道構造物に付加的に導入する移動制限装置に対しては,常時の使用性と地震時の高耐震性とを同時に満足する構造とするため,以下のような要求性能を設定した.

- 1. 線路方向には免震構造のみとし,移動制限装置は免震 支承の応答を阻害しない
- 線路直角方向に対して、常時および高頻度低レベルの 地震(0.15G程度)に対しては、列車走行性に影響する 線路直角方向の変位を拘束する
- 線路直角方向に対して、大規模地震下(0.3G程度以上) においては移動制限装置が破壊し、線路方向・線路直 角方向ともに免震構造とする

上記設計仕様を満足する移動制限装置として,図-1に示 すような,ボルト破断型緩衝ストッパー(以下ストッパー と表記)を提案した.これは,大規模地震時にボルトが破 断し,固定状態から可動状態となるとともに,常時・小規 模地震時においてはボルトのせん断耐力により変形を抑制 するデバイスである.また,ボルトを複数配置することで, 破断による急激な耐力低下を防ぐ構造としている.図-2に は,静的載荷試験により得られた荷重-変位関係を示す.

図-1: ボルト破断型緩衝ストッパー

3. 実大振動台および試験体の諸元

本実験は,京都大学防災研究所の大規模強震応答実験装置(実大振動台)により行った.この振動台は,±250 mm のストローク範囲において最大1Gの入力を再現すること が可能である.

図-3 に示すように,振動台上に免震支承およびスラブ板 を設置し,スラブ板にストッパー本体を,振動台にストッ パー台座を設置した.台座には,線路方向(加振直角方向)

キーワード: 実大振動台実験,鉄道免震,ボルト破断型緩衝ストッパー 連絡先: 〒 185-8540 東京都国分寺市光町 2-8-38 Tel 042-573-7280 / Fax 042-573-7369

図-2:静的試験による荷重-変位関係

にスムーズに動作させるために,ガイドレールを設置して おり,ストッパーとレールとの間には 1.5 mm 程度の遊間 を確保している.ストッパー本体は振動時に,このガイド レールから反力を受けて破断する構造となっている.

支承は HDR (G4)を用い,3分力計により支承の反力を 直接計測した.また,スラブ板重量が約10 ff になるように 錘を上載した.なお,本試験体は支承の他に,リニアガイ ドによってもスラブ板重量の一部を受け持たせる構造とし ており,これにより免震構造のみの固有振動数は1 Hz 程度 となっている.

加振入力としては「鉄道構造物等設計標準・同解説(耐 震設計)」に規定されている,L1(想定常時,以下L1と表 記)およびL2スペクトルII適合波(大規模地震動,L2S2 と表記)のうち,G1地盤のものを用いた.最大加速度はそ れぞれ137 gal,500 gal とした.

図-3: 振動台への試験体設置状況

実験結果と考察

図-4,6 には,それぞれ L1(137 gal) および L2S2(600 gal) 入力時の,スラブの相対変位(=支承の変位,ストッパーの 変位),絶対加速度,および支承の反力を示す.図は,別途 行った免震支承のみの場合の試験結果(赤線)との比較と なっている.また,図-5,7 には,同様にL1,L2S2 時の支承 およびストッパーそれぞれの変位-荷重履歴を示す.ストッ パーの反力は,桁の慣性力から支承の反力を差し引くこと により求めている.

(1) L1 線路直角方向入力

図-5 および図-2 より,小規模地震時にはストッパーの挙動は弾性域にとどまっていることが分かる.また,スラブの変位応答も最大 5 mm 程度に抑制されている.加速度応答にはパルス的な挙動が見られるが,これはストッパーと台座とが衝突した時の衝撃によるものである.

(2) L2S2 線路直角方向入力

L2S2 においては,図-7から分かるようにストッパーは正 側変位時において完全に破断している.図-8 には試験後の ストッパーを示す.このように,1段目のボルトが破断した 後,2段目のボルトが長穴を潰しながら徐々に破断したこ とが分かる.ストッパー履歴からは,この時ボルトが2段 に分けて破壊している性状が観察でき,図-2との比較から ほぼ設計値・静的試験の結果と同じ荷重レベルで破壊が生 じていることが分かる.

構造系に与える影響としては,変位応答の比較図より,免 震のみの場合とほぼ同じ応答が得られている.これは,図-6 の加速度応答より,ボルトが比較的振動初期に破断しいる ためと考えられる.またこれにより,支承に過大な荷重が 作用することなく比較的スムーズに免震化している.

5. まとめ

以上の実験結果より,開発したしたボルト破断型緩衝ス トッパー装置は,常時は固定,大地震時には破断という要 求性能を満足しており,破壊荷重レベルも,静的試験の結 果がほぼ動的特性と一致するとの結論が得られた.今後は, 実際の構造系に適用可能なレベルでの供試体設計,静的試 験等を行うとともに,免震構造系全体を対象とした試設計 等を行う予定である.

謝辞:本実験の実施にあたっては,京都大学工学研究科中西伸二技術専門官,学生諸兄をはじめ多くの方々にご助力頂きました.こ こに記して謝意を示したいと思います.

図-4: スラブ相対変位・絶対加速度・支承反力 (L1G1)

図-5: 支承およびストッパー履歴 (L1G1)

図-6: スラブ相対変位・絶対加速度・支承反力 (L2S2-G1)

図-7: 支承およびストッパー履歴 (L2S2-G1)

図-8: ストッパーボルト破断状況 (L2S2-G1)