曲げおよび軸力変動を生じる円筒断面部材の限界ひずみ算定式の提案

長崎大学大学院	学生会員	林浩二郎	長崎大学工学部	正会員	中村	寸聖三
長崎大学工学部	フェロー会員	高橋和雄	長崎大学工学部	正会員	呉	慶雄

1. はじめに

一定軸力下で曲げを受ける鋼部材に対する限界ひずみの算定式は,既往の研究¹⁾で提案されている.しかし, ラーメンやアーチなどその面内に水平地震動が作用した場合に,曲げとともに軸力の変動を生じる構造物もあ り,軸力変動の影響を考慮した各種断面に対する限界ひずみの算定式の確立が望まれる.本研究では,円筒断 面鋼部材について軸力が線形的に増加する場合の限界ひずみの算定式を提案する.

2. 解析概要

2.1 解析モデルの諸元

円筒断面鋼製部材の場合,断面の変形能を支配する最も重要な パラメータは径厚比であるため,本研究では,文献¹⁾を参考に径厚 比パラメータ R_tを 0.094~0.5 までの7種類,板厚 t を一律 20mm と し解析を行う.板厚中心の直径 D,部材長 L は設定したパラメー タ R_t, t を用いて式(1),(2)より算定する.式(2)から求められる部 材長 L は,弾性座屈を生じる場合にその形状がサイン波の半波と して表されるときの長さである.

$$R_t = \sqrt{3(1-2)} \cdot \frac{\sigma_y}{E} \cdot \frac{r}{t}$$
(1)

$$\frac{L}{D} = \frac{0.585}{R_t^{0.08}} - 0.580 \tag{2}$$

ここに, σ_y :降伏応力,E:ヤング率,v:ポアソン比,r:板厚中 心半径,t:板厚,D:板厚中心直径,L:部材長である.**表**-1 に はこのようにして得られた解析モデルの諸元を示している.なお, これらの値を求めるに際しては $\sigma_y = 235$ N/mm², $E=2.06 \times 10^5$ N/mm², v = 0.3としている.応力-ひずみ曲線は**図**-1に示すようにトリリ ニアモデルとし,使用鋼材として SS400を想定し,ひずみ硬化開 始点でのひずみ ε_{st} を $10\varepsilon_y$,初期ひずみ硬化係数 E_{st} を E/40とする.

今回の解析では初期不整として,初期たわみと溶接による残留 応力を考慮する.初期たわみは,文献に基づき解析モデルの高さ 方向に式(3)に示される半波のサイン波を仮定する.

$$\omega = \omega_{\max} \cdot \sin\left[\frac{\pi}{L}\left(\frac{L}{2} - z\right)\right] \tag{3}$$

ここに, ω: 板厚方向のたわみ, ω_{max}: 板厚方向の最大初期たわみ である.なお,最大初期たわみω_{max}は,文献¹⁾よりモデルにおけ る最大初期たわみの平均的な値で 0.0025L とした.溶接による残 留応力の分布は,**図-2**のように仮定する.また,残留応力の値は 部材の高さ方向には一様に生じているとする.

キーワード:円筒断面鋼製部材,軸力変動,限界ひずみ 連絡先:〒852-8521 長崎市文教町1-14 長崎大学工学部社会開発工学科(TEL&FAX)095-819-2613

表 - 1	解析モデノ	レの諸元
-------	-------	------

モデル	D	t	L	D/t	D	
	(mm)	(mm)	(mm)	D/l	Λ_t	L/D
1	1988	20	252.6	99.4	0.094	0.127
2	2656	20	292.2	132.8	0.125	0.110
3	3980	20	350.2	199.0	0.188	0.088
4	5308	20	398.0	265.4	0.250	0.075
5	6636	20	411.4	331.8	0.313	0.065
6	7962	20	420.0	398.1	0.375	0.053
7	10616	20	407.0	530.8	0.500	0.038

図-3 解析モデル

2.2 解析方法

解析には MARC K7.3 を用いる.**図**-3にモデルを示す.高さ方向の対称性を考慮し,部材の上半分をシェル要素(No.75)でモデル化し,高さ方向に8分割,周方向に30分割する.モデルの下端は対称条件から2軸方向変位および,X,Y軸回りの回転を固定し,上端については平面保持の法則が成り立つような拘束条件を与えている.載荷条件としては,モデル上断面中心部に溶接部分が引張を受けるように全体座標系のY軸回りに回転変位を与えると同時に,同じ位置に軸力を与える.軸力が最終軸力 P_f に到達する点については**図**-4に示すように軸力変動がない場合に曲げモーメントが最大値に達する時間と一致させる.さらに,最終軸力到達後は,一定値を保つものとする.ここでは軸力変動の大きさを表わすパラメータとして,式(4)で定義される α を用いる.最終軸力 P_f は,0.2 P_y ,0.4 P_y ,0.6 P_y の3通りについて調査する.軸力変動の大きさは最大でも初期軸力の3倍程度と想定し,3種類の P_f に対して α を1.0,1.5,2.0,3.0と変化させて解析する.

M,N

 $\mathbf{P_f}$

 P_i

0

14

12

10

ట్ 8

/ⁿ36 4 2 0 0.0

0.1

図 - 5

0.2

0.3 R_t 0.4

=1.0 での限界ひずみ

・曲げモーメント

時間

Pf=0.2Py Pf=0.4Pv

Pf=0.6Pv

(5)Pf=0.2P

(5)Pf=0.4P

(5)Pf=0.6P

0.5 0.6

---軸力

×

図-4 軸力変動

 $\alpha = 1.0$

$$P_i = \frac{1}{\alpha} \cdot P_f \tag{4}$$

3. 解析結果および考察

本解析では,M- 関係においてピークから95%に強度が低下したときのモデル上端圧縮側最外縁の鉛直変位から算出した平均ひずみを限界ひずみとした.今回は,式(5)で表される一定軸力での限界ひずみに,軸力変動率の関数で表される係数F(式(6),(7),(8))を乗じることで各最終軸力での限界ひずみを表した。図-5では一定軸力での解析結果と式(5)を比較している.誤差は10%以内である.求められた算定式と解析値との比較を図-6に示す.誤差は最大でも10%程度であり,式の精度は十分と思われる.なお,今回提案した式の適応範囲は0.094 R₁ 0.5である.

$$\frac{\varepsilon_u}{\varepsilon_y} = (1.69 - 1.08 \frac{P_f}{P_y}) R_t^{0.54 \frac{P_f}{P_y} - 0.962} \qquad (\alpha = 1.0)$$
(5)

$$F = (0.026\alpha - 0.01) Ln(R_t) - 0.001\alpha + 1.015 \qquad (P_f = 0.2P_y) \cdots (6)$$

$$= (0.03\alpha + 0.07) Ln(R_t) - 0.126\alpha + 1.188 \qquad (P_f = 0.4P_y) \cdots (7)$$

$$= (0.01\alpha + 0.07) Ln(R_t) - 0.03\alpha + 0.822 \qquad (P_t = 0.6P_y) \cdots (8)$$

4. 今後の検討課題

今回提案した算定式は特定の最終軸力でしか適応できないため,式(6),(7),(8)の関係を調査する必要がある. また,式(5)については一定軸力下での限界ひずみを算出する式がいくつか提案されているので,それらの提 案式と比較検討する予定である.さらに,径厚比パラメータが小さい範囲の解析をまとめ,限界ひずみを径厚 比,軸力変動,最終軸力の各パラメータを用いて表せないかを検討し,断面形状の異なる場合についても同様 の解析を行う.

参考文献 1) Gao ら: Ductility of steel short cylinders in compression and bending, J.Engrg. Mech., ASCE, 124(2), pp. 176~186, 1998