地震動の振幅スペクトルに及ぼす位相スペクトルの不確定性の影響

- (財)鉄道総合技術研究所 正会員 川西 智浩
 - 京都大学防災研究所 正会員 佐藤 忠信
- (財)鉄道総合技術研究所 正会員 室野 剛隆

1.はじめに

地震動の非定常性を支配する要因となっているのは,位相スペクトルである.著者らはこれまでに,位相ス ペクトルを角振動数で微分した群遅延時間のモデル化に関して一連の研究を行ってきた¹⁾が,このモデルでは 群遅延時間の平均値と標準偏差によりモデル化が行われており,モデルを用いて決定される位相スペクトルに は不確定性がある.そこで本研究では,位相スペクトルの不確定性が地震動の振幅スペクトルに及ぼす影響に ついて考察する.

2.群遅延時間の微小変化による振幅への影響

まず, 地震動の時刻歴波形 x(t) は, 次式のように表される.

$$x(t) = \sum_{k=1}^{N} x_{k}(t) = \sum_{k=1}^{N} a_{k} \cos(\omega_{k}t + \phi_{k}) , \quad \phi_{k} = \phi_{0} + \sum_{l=1}^{k} \xi_{l} , \quad \xi_{l} = t_{gr,l} \cdot \Delta\omega$$
(1)

 a_k は振幅スペクトル, ϕ_k は位相スペクトル, ϕ_0 は初期位相, $t_{gr,l}$ は群遅延時間である.また著者ら²⁾は,地震動が因果性を有していることを拘束条件として,振幅と位相の関係が次式で表されることを示している.

$$a_{l}\sin\phi_{l} = 2\sum_{k=1}^{N/2-1}\gamma_{l,k}a_{k}\cos\phi_{k} + \gamma_{l,N/2}a_{N/2}\cos\phi_{N/2}$$
(2)
$$2\sum_{k=1}^{N/2-1}\left(2\pi km\right)\left(2\pi lm\right)$$
(2)

$$\gamma_{l,k} = -\frac{2}{N} \sum_{m=1}^{N/2-1} \cos\left(\frac{2\pi km}{N}\right) \sin\left(\frac{2\pi lm}{N}\right)$$
(3)

ここで,(1)式における $t_{gr,l}$ のうち,m番目の群遅延時間 $t_{gr,m}$ のみを $t_{gr,m} + \Delta t_{gr}$ に変え,新たに位相スペクトル ϕ_k を算定する.そして,新たな ϕ_k を用いて(2)式より振幅 スペクトル a_k を求めることにより,群遅延時間の微小 変化が振幅スペクトルに与える影響を検討する.

ー例として,兵庫県南部地震において神戸海洋気象台 で観測された地震波(NS成分)の最大加速度を1.0(gal) に調整した波形について, t_{gr}=0.01(sec)として変化さ せた位相を用いて,(2)式より算定した振幅スペクトル を,観測波の振幅スペクトルとともに図1に示す.m=5 及びm=252では,観測波の振幅スペクトルを概ね再現 できているが,m=60では観測波とはかなり異なった振 幅の形状になっている.観測波の振幅スペクトルを見る と,k=5,252に比べて,k=60では振幅の値が非常に 大きくなっている.したがって,振幅の値が大きくなっ ている振動数における群遅延時間を微小変化させると, 振幅スペクトルに大きな影響を及ぼすことがわかる.

図1 微小変化させた群遅延時間を用いて求めた 振幅スペクトルと観測波の振幅スペクトルの比較 (神戸海洋気象台波形)

キーワード 地震動,位相スペクトル,振幅スペクトル,不確定性,群遅延時間 連絡先 〒185-8540 東京都国分寺市光町 2-8-38 TEL 042-573-7261 FAX 042-573-7248 3. 位相スペクトルの不確定性の影響

まず,時刻歴波形 $x_{k}(t)$ の,位相 ϕ_{k} に関する期待値を $\bar{x}_{k}(t)$ とすると,(2)式より,

$$\overline{x}_{k}(t) = E[x_{k}(t)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} a_{k} \cos\left\{\omega_{k}t + \phi_{0} + \sum_{l=1}^{k} \xi_{l}\right\} p(\xi^{(k)}) d\xi_{1} d\xi_{2} \cdots d\xi_{k}$$

$$= a_{k} \exp\left\{-\frac{1}{2} \sum_{l=1}^{k} \sum_{m=1}^{k} S_{lm}\right\} \cos\left(\omega_{k}t + \phi_{0} + \sum_{l=1}^{k} \mu_{l}\right)$$

$$(4)$$

である.ここで, S_{lm} は ξ の共分散, $p(\xi^{(k)})$ は $\xi^{(k)}$ の確率密度関数である.また, μ_l は ξ_l の平均値であり,群 遅延時間 $t_{gr,l}$ の平均値を μ_{lgr} とするとき, $\mu_l = \mu_{lgr} \cdot \Delta \omega$ となる.(4)式の片側フーリエスペクトルを $\bar{x}_k(\omega)$ とし, $\phi_0 = 0$ とすると,

$$\overline{x}_{k}(\omega) = a_{k} \exp\left\{-\frac{1}{2} \sum_{l=1}^{k} \sum_{m=1}^{k} S_{lm}\right\} \exp\left\{i\left(\sum_{l=1}^{k} \mu_{l}\right)\right\} \delta(\omega - \omega_{k})$$
(5)

$$\overline{X}_{k} = \int_{-\infty}^{\infty} \overline{x}_{k}(\omega) d\omega = a_{k} \exp\left\{-\frac{1}{2} \sum_{l=1}^{k} \sum_{m=1}^{k} S_{lm}\right\} \exp\left(-i \sum_{l=1}^{k} \mu_{l}\right)$$
(6)

となる.いま,群遅延時間が振動数間において無相関であるとすると,

$$\overline{x}_{k}(t) = a_{k} \exp\left\{-\frac{1}{2}\sigma_{0}^{2}\omega_{k}\right\} \cos\left(\omega_{k}t + \sum_{l=1}^{k}\mu_{l}\right), \quad \frac{\overline{X}_{k}}{a_{k}} = \exp\left\{-\frac{1}{2}\sigma_{0}^{2}\omega_{k}\right\} \exp\left(-i\sum_{l=1}^{k}\mu_{l}\right)$$
(7)

となる.ここで, σ_0^2 は角振動数 ω_k における群遅延時間の分散を表す.(7)式より,特に高振動数領域では, 群遅延時間の不確定性が大きくなると,地震動の振幅が大きく減少することがわかる.

ここでは一例として,振幅 a_k を1.0 と固定した 場合における試算を行う.図2には,平均値 $\mu_{tgr} = 0.0$ 及び標準偏差 $\sigma_0^2 = 1.0$ とした場合にお ける,角振動数 ω_k と(7)式の \overline{X}_k/a_k の対数との関 係を示している.実線は(7)式による厳密解を,ま た破線は,群遅延時間を正規乱数により発生させ た場合のモンテカルロシミュレーションの結果 をそれぞれ示しており,両者は概ね一致している. また,図3には, $\mu_{tgr} = 5.0$ の場合について, σ_0^2 の値を変えた場合の $\overline{x}(t)(=\sum \overline{x}_k(t))$ の時刻歴波 形を示している. σ_0^2 が大きくなると,最大加速 度が急激に減少することがわかる.

4.おわりに

位相スペクトルの不確定性について基礎的な 検討を行うことにより,地震動の位相スペクトル の不確定性が大きくなると,地震動の振幅スペク トルに大きな影響を及ぼすことを示した.実地震 波は振動数間の群遅延時間に相関性を有してい るため,その影響を加味した検討を行うことが今 後の課題である.

謝辞 本研究は,国土交通省からの補助金を受けて得られた研究成果の一部である.

参考文献 1) 佐藤忠信,室野剛隆,西村昭彦:観測波を用いた地震動の位相スペクトルのモデル化,土木学会論 文集,No.640/I-50,pp.119-130,2000.2) 佐藤忠信,室野剛隆:位相情報を利用した非定常地震動のシミュレー ション法,土木学会論文集,No.752/I-66,pp.159-168,2004.