人工軽量骨材コンクリートの応力ーひずみ関係に関する研究

九州大学大学院	正会員	Ha Ngoc Tuan	九州大学大学院	フェロー	大塚久哲
国土交通省	正会員	光武孝弘	(株)長大	正会員	秋元 泰
建設業協会九州支部	正会員	吉村 徹	九州大学大学院	正会員	矢葺 亘

1.はじめに

人工軽量骨材コンクリートを利用すると (1) 慣性力低減による構造物全体としての耐震性の向上 (2) 基礎構造の縮小化などに利点を有するため,工期短縮・経済性向上となるものと期待されている.ただし,それらの利点を十分発揮し,かつ耐震安全性を確保するためにはコンクリート材料としての基礎物性値の把握が必要である.そこで本研究では,部材のモデル化および耐震性能評価を行うために必要な,拘束効果を考慮した軽量コンクリートの応力-ひずみ曲線の提案を行った.

2. 実験概要と実験結果

(1) シリンダー実験

本研究では,膨張頁岩系の人工軽量骨材(粗骨材) を利用したコンクリートを使用した.配合強度20, 30,40N/mm²の3種類のテストシリンダーを対象と し,実験を行った.表 - 1に示すように実強度はす べて,配合強度を上回っている.また引張強度は圧 縮強度の1/17から1/18であった.ヤング係数は同 強度の一般的な普通コンクリートの約60%であっ た.また表 - 2および図 - 1に圧縮強度 - ヤング係 数に関する実験結果を示す.図 - 1より,圧縮強度 とヤング係数には,以下のような関係があること が明らかになった.

E_c=0.15f_c'+ 12.64 (1) E_c:軽量コンクリートヤング係数(kN/mm²) f_c':軽量コンクリート圧縮強度(N/mm²)

- (2) 中心軸圧縮実験
- a) 実験概要

供試体一覧を表 - 3 に示す.主鉄筋 SD295D6の8 本を配置した20x20cm 正方形断面を有する高さ 60cmの柱とした.帯鉄筋(SD295D6)間隔を変えた 6 ケース(普通コンクリートは3 ケース)(体積比

_s = 0% ~ 2.51%)について荷重とひずみを計測 した.配合強度40N/mm²に対する合計6体の軽量コ ンクリートをDシリーズ,3体の普通コンクリート をEシリーズ,同様に配合強度30N/mm²に対して, FシリーズとGシリーズと呼ぶ.5000kN圧縮試験 機を使用し,載荷は変位制御による単調一軸圧縮 とし、載荷速度は毎分0.1mmとした.

b) 実験結果

図 - 2,3のD,EシリーズとF,Gシリーズの実験結 果を通して次のことが分かった. 軽量コンクリー トは普通コンクリートと比較して,横拘束筋によ る最大応力時のひずみの増加が少ない. 強度が

表-1 シリンダー試験結果

配合	圧縮	引張	ヤング	単位
強度	強度	強度	係数	質量
(N/mm²)	(N/mm²)	(N/mm²)	$(x10^{4}N/mm^{2})$	(kg/m ³)
20	30		1.7	
30	43.81	2.48	1.83	1910
40	54.35	2.99	2.03	1910

セメント	W/C	圧縮強度 (N/mm²)	ヤンク 係数 (kN/mm²)	
早強	30	54.1	20.7	
	35	52.8	20.4	
	40	43.8	18.3	
普通	40	48.6	20.4	
	45	41.4	19	
	50	37	18.8	
低熱	40	42.4	19	
	45	40	18.9	
	50	27.2	16.4	

表 3 中心軸圧縮実験供試体一覧

	断面	コンクリート		帯鉄筋			
供試体	形状	珸	無拘束強度	記号		日日7百	体積比
名前	高さ	个里 ***	(配合強度)	直径	s y	同門	s
	(cm)	沢貝	(kN/mm²)	(mm)	(KN/mm)	(mm)	(%)
D1						30	2.51
D2						45	1.81
D3	20x20	軽	54.66	SD295	344	60	1.15
D4	50	量	(40)	D6	544	90	0.69
D5						120	0.46
D6						450	0.00
E1	20x20	普	39.87	SD295		45	1.81
E2	50	谣	(40)	DG	344	60	1.15
E3	50	更	(40)	Do		90	0.69
F1						30	2.51
F2						45	1.81
F3	20x20	軽	37.12	SD295	344	60	1.15
F4	50	量	(30)	D6	344	90	0.69
F5						120	0.46
F6						450	0.00
G1	20x20	普	29.10	SD295		45	1.81
G2	50	· -	(20)	DC	344	60	1.15
G3	50	迪	(30)	Шb		90	0.69

キーワード 軽量コンクリート,中心軸圧縮実験,応力-ひずみ,耐震安全性

連絡線 〒 812-8581 福岡市東区箱崎6-10-1 九州大学大学院建設システム工学専 TEL.092-642-3268

60

50

40

30

20

10

0

义 2

0

2000

応力

(N/mm2)

応力度

3. 応力 - ひずみ曲線のモデル化

現在,道路橋示方書1)においては,応力-ひ ずみ曲線を次式で表している.

$$f_{c} = E_{c} \boldsymbol{e}_{c} \left\{ 1 - \frac{1}{n} \left[\frac{\boldsymbol{e}_{c}}{\boldsymbol{e}_{cc}} \right]^{n-1} \right\} (0 \quad c \quad \infty) \quad (2)$$

$$f_{c} = f_{cc} - E_{des} (\boldsymbol{e}_{c} - \boldsymbol{e}_{cc}) \quad (\quad \infty \quad c \quad \omega) \quad (3)$$

$$\Xi \equiv |\Xi, n = \frac{E_{c} \boldsymbol{e}_{cc}}{E_{c} \boldsymbol{e}_{cc} - f_{cc}} \quad , \quad \boldsymbol{e}_{cu} = \boldsymbol{e}_{cc} + \frac{f_{cc}}{2E_{des}}$$

 f_{cc} :最大圧縮応力(N/mm²), ":最大応力時 のひずみ _:終局ひずみ E:ヤング係数(N/mm²) 本研究もこの手法を参考に,式中のf_, __およ びE_wと横拘束鉄筋の効果との関係を 実験結果 の回帰分析より提案した.図-4~6にf_m, およびEaseと拘束効果との関係の実験結果を示 す.f。を無筋供試体強度, 。を帯鉄筋体積比 とすれば,これらの関係は次式のように表すこ とができる.また式(6a)と式(6b)はそれぞれ配 合強度40kN/mm²と30kN/mm²の供試体の下降領域 の勾配に対応する.

$$f_{cc} = 0.945 \quad f_{c0} + 0.43 \quad \mathbf{r}_{s} \mathbf{s}_{sy}$$
(4)
$$\boldsymbol{e}_{cc} = 6.229 \, x 10^{-5} \, f_{c0} + \frac{0.00453 \, \mathbf{r}_{s} \mathbf{s}_{sy}}{f_{c0}}$$
(5)

4. 既往モデルとの比較とまとめ

図 - 7および図 - 8に実験結果と本提案式 道示式(星隈²⁾)Kent and Park³⁾ 式の比較を示す.f_m, m, E_m等の算出に,普通コンクリートのパラメータ を用いた道示式, Kent and Park 式は実験値との差が大きいが,提案式は実 験結果を精度よく表現している.本研究で道路橋示方書を参考に横拘束筋に よる拘束効果を考慮した軽量コンクリートの応力 - ひずみモデルを提案した. 提案式は実験結果を精度よく表現できた.また下降領域に関しては実験に則

(F2 供試体)

した形で配合強度別に E_{me}を提案した.ただし,先述の脆性的な破壊特性を考慮し,終局点の決定には注意を要する. 参考文献

1) 日本道路協会:道路橋示方書・同解説:V 耐震設計編,1996年12月

2) 星隈,川島,長屋:鉄筋コンクリート橋脚の地震時保有水平耐力の照査に用いるコンクリート応力-ひずみ関係:土木学会 論文集 No.520/V-28,1-11,1995.8

3)Kent,D.C and Park,R.:Flexural member with confined concrete, J.Struct.Div.,ASCE,Vol.97,No.7,pp1969-1990,1971 4)大塚,塚原,中尾,左東:人工軽量骨材を用いた高強度軽量コンクリートのポンプ圧送性に関する検討:土木学会論文集 Vol.41, No.12, 2003.12