下路式タイドアーチ木車道橋の静的特性評価

(株)日本製鋼所	〇正員	寺田	寿	岩手大学工学部	正員	岩崎	正二
(株)日本製鋼所	正員	奥野	寛人	岩手大学工学部	正員	出戸	秀明

1. はじめに

岩手県遠野市附馬牛町に、木材(集成材)と鋼材か ら構成される複合型の車道橋である小出橋が建設され た。このような集成材を用いた木橋の建設技術はめざ ましい進展を遂げており、また自然環境や景観にも優 れていることから、今後もその建設数はさらに増加す るものと考えられる。しかしながら、このような複合 橋梁に関する研究や実験例は極めて少なく、その構造 特性に関するデータが不足しているのが実情である。 そこで本研究では、完成直後の小出橋に対して、1)橋 梁完成系における静的強度の検証、および2)維持管 理のための初期値データの収集を目的に静的載荷実験 を実施した。そして、FEMによる構造解析も実施し、 実験と解析の両面から本橋の剛性や静的強度などの検 証を行った。

2. 小出橋の概要

小出橋の一般図および外観写真を図-1 および 図-2に示す。本橋は、橋長29.4m、幅員5.0mの下 路式タイドアーチ木車道橋であり、その主要部材に集 成材と鋼材を用いたハイブリッド橋梁である。アーチ 部および床版部にはカラマツ集成材を使用し、その他 の吊材や桁材等に鋼材を併用することで、橋梁全体の 構造強度および安全性を確保している。アーチリブの 断面は、幅20cm×高さ120cmの構造用集成材を3体 側面接着し、幅60cm×高さ120cmの大断面を形成 している。また、アーチ上面には、アーチリブを日射

図-1 小出橋の外観

や雨水から保護するために鋼板が葺かれている。一 方、鋼材には耐候性鋼材を採用し、床版には SMA490Wをその他の吊材や桁材等にはSMA400W を用いている。また各支承部には、5層の積層ゴム支 承を用いている。なお、含水率の変化等に追従が可能 なように特殊弾性舗装が施されている。

3. 静的載荷試験

本試験では、約196 kN トラック2 台を用いて、 表-1に示す実験 CASE にて車両台数および載荷位置 を幅員方向や橋軸方向に変化させて、ひずみおよびた

表-1 実験 CASE

実験	載荷条件				
CASE	トラック	橋軸方向	幅員方向		
CASE1	1台	1/4L	中央		
CASE2			G2桁側		
CASE3		2/4L	中央		
CASE4			G2桁側		
CASE8		9/4I	中央		
CASE9		5/4L	G2桁側		
CASE5		3/4L			
CASE6	2台	2/4L	中央		
CASE7		1/4L			

キーワード:ハイブリッド木橋,構造解析,載荷試験,集成材 〒051-8505 北海道 室蘭市 茶津町4番地(株)日本製鋼所 室蘭研究所 TEL 0143-22-0750 FAX 0143-22-4180 わみを測定した。図-1に変位計およびひずみゲージ の計測位置を示す。補剛桁(G1,G2)でのたわみ測 定は、桁全体のたわみ挙動を把握するために、L/4 点、 L/2 点、3L/4 点および両支点に変位計を設置して行っ た。また、アーチリブのたわみ計測点はアーチ中央の みとした。ひずみの計測は、各補剛桁の支承から 3.53mの点の直上に位置するアーチ断面において、下 面および側面にそれぞれ3枚の木材用ひずみゲージを 設置して行った。

4. 構造解析

静的載荷実験結果との比較検討を行うために、 FEMによる構造解析を実施した。本解析には汎用有限要素法プログラムABAQUS Ver6.4-1を用いた。 図-2に解析モデルの要素分割図を示す。モデル化に 関しては、アーチ部材、対傾構、木床版、地覆および ゴム支承に8節点固体要素を、吊材、縦桁、床桁、補 剛桁およびその他の鋼板に4節点シェル要素を、そし て高欄に2節点はり要素を用いた。表-2に解析に用 いた材料定数を示す。すべての部材を等方性材料と仮 定し、それぞれ規格値を用いた。

5. 実験および解析結果

図-4にCASE1およびCASE2の実験から得られた 補剛桁のたわみ分布をFEM解析結果と比較して示し ている。載荷位置に関わらず実測値は、解析値と良く 一致していることがわかる。他のCASEにおいても実

図-3 解析モデルの要素分割図

表 - 2 杉	オ 料定数
---------	--------------

	縦弾性係数	横弹性係数	ポアソン比
	E (GPa)	G (GPa)	V
集成材	1.03×10^{1}	3.68×10^{0}	0.4
鋼材	2.06×10^2	7.92×10^{1}	0.3
ゴム(支承)	2.94×10^{-3}	9.81×10^{-4}	0.5

測値と解析値はほぼ一致した結果が得られたことか ら、本橋は、解析モデルとほぼ同等の静的剛性を有し ているものと判断される。図-5に CASE1の実験か ら得られたアーチ側面のひずみ分布を解析結果と比較 して示している。実験値に若干のバラツキが見られる ものの、解析結果とほぼ一致していることがわかる。 なお、各 CASE において、ひずみはアーチ下面でほぼ 一定値となり、アーチ内側では曲げ成分が生じる傾向 が得られた。

6. まとめ

静的載荷実験より得られたたわみおよびひずみは、 いずれの載荷パターンにおいても FEM による解析結 果と良く一致した。したがって、本橋は、解析モデル とほぼ同等の静的剛性を有しているものと判断さ れる。

