Biot物体における散乱特性の数値解析

東北大学大学院	正	員	山本晃司
東北大学大学院	正	員	北原道弘

1. はじめに

Biot 物体¹⁾ 中の波動散乱の特性を明らかにするために, 無限多孔質弾性体内に存在するキャビティによる弾性波の 散乱振幅を,周波数領域の境界積分方程式を用いて得た境 界上の変位・圧力の解と遠方近似を用いて計算した.平面 波が球形キャビティに入射する場合の散乱特性の特徴を, 多孔質弾性パラメータにより整理した.

2. 散乱場の積分表現

Biot 物体に現れる三種類の波¹⁾を, T-波(横波), LS-波(主として固体骨格部を伝播する縦波), 及び LF-波(間隙流体を伝播する縦波)と呼ぶことにする.それぞれの波数を k_T , k_{LS} , 及び k_{LF} と表す.

ここでは,図-1に示すように,多孔質弾性体*D*において,時間調和波 $q_I^{in}(x) = \{u_1(x), u_2(x), u_3(x), p(x)\}$ が散 乱体 D^c に入射する問題を考える.ここで u_i は x_i 方向の 固体骨格部の変位,pは間隙流体圧力を表す.点xにおけ る散乱波の場 q_J は次の境界上の積分方程式で表される²⁾.

$$C_{IJ}q_{J}(\boldsymbol{x}) = q_{I}^{in}(\boldsymbol{x}) + \int_{S} [G_{IJ}(\boldsymbol{x},\boldsymbol{y})s_{J}(\boldsymbol{y}) - W_{IJ}(\boldsymbol{x},\boldsymbol{y})q_{J}(\boldsymbol{y})]dS_{y}$$
(1)

ここで, $s_J = (t_1, t_2, t_3, q_n)$ は一般化されたトラクション ベクトル, t_i は全応力に対応するトラクションベクトル, q_n は境界上の固体骨格を出入りする流体のフラックスを 示す. G_{IJ} は多孔質弾性体の基本解²⁾, W_{IJ} は境界条件 に適合して定義される二重層核, C_{IJ} はフリータームを示 す.式(1)を離散化し適切な境界条件を設定することで, 境界 S上に入射波 q_J^{in} が与えられた場合の境界上の変位場 (q_J) , またはトラクション (s_J) が計算される.式(1) に遠

図-1 多孔質弾性体 D 中の散乱体 D^c による散乱

表-1 多孔質弾性パラメータ

記号	内容	本論中で用いた値	
μ, λ	排水 Lamé 定数	$\mu = \lambda$	
α	Biot の定数	$\beta < \alpha \leq 1$	
M	Biot の弾性定数	5μ	
β	孔隙率	0.2	
ρ, ρ_f	全体及び流体の密度	$\rho = 3\rho_f$	

方近似を導入し,境界での変位・トラクションに境界要素 法の解を代入することで,領域 D内の点xにおける散乱 場のJ成分 $q_1^{sc:p}$ は次の式で表される.

$$q_J^{sc;p}(\boldsymbol{x}) = A_J^{T;p} \frac{e^{ik_T |x|}}{|x|} + A_J^{LF;p} \frac{e^{ik_{LF} |x|}}{|x|} + A_J^{LS;p} \frac{e^{ik_{LS} |x|}}{|x|}$$
(2)

ここで, $A_J^{q:p}(\hat{p}^{in}, \hat{x})(q, p = T, LF, LS)$ は \hat{p}_{in} に向かって 伝播する p-波の入射波に対する, \hat{x} に向かう q-波の散乱波 に関する散乱振幅の J 成分を示す.上添え字の p は入射波 の成分,q は散乱波の成分(それぞれ,T, LS, LF のい ずれか)を示す.

以降,多孔質弾性パラメータが散乱振幅 A^{q;p} に与える 影響を見ることで,それぞれのパラメータが散乱特性に与 える影響を示すことにする.

解析に関連する多孔質弾性パラメータを表-1に示す.

3. 球形キャビティによる散乱

3.1 解析モデル

ここでは,図-1に示すように,半径aの球形キャビティに対し,+ x_3 方向に伝播するLS-波の平面波が入射する問題を考える.位相と散逸の基準点は入射側の表面 $(x_3 = -a)$ に置くことにする. x_3 の向きを極としたした時の天頂角 θ の方向のLF-波,LS-波のそれそれの散乱振幅を求める.

ここで,連成の効果が無いときの入射波の波数 k_{LS_0} と キャビティの半径 a の関係は $ak_{LS_0} = 1.3$ とする.キャビ ティの表面は,非浸透性 $(q_n = 0)$,全応力に対応するトラ クションが $0(t_i = 0)$ の自由表面の境界条件を与える.

3.2 散乱振幅の連成効果

図-2と図-3に,散逸が無い場合の,Biotの定数 α が変化したときの前方 ($\theta = 0^{\circ}$)と後方 ($\theta = 180^{\circ}$)の, 縦波の散乱に関する散乱振幅の,径方向変位 u_r の成分 ($A_{u_r}^{LF;LS}, A_{u_r}^{LS;LS}$)の変化を示す. α が最小値 ($\alpha = \beta = 0.2$)の時の LS-波の入射に対して,LF-波の寄与はないが, α が最大値 ($\alpha = 1$)に近づくにつれて,LF-波の寄与が大きくなることがわかる.

〒 980-8579 仙台市青葉区荒巻字青葉 06, TEL 022-217-7126, FAX 022-217-7127 URL: http://www.nde.civil.tohoku.ac.jp/

キーワード: Biot 物体, 多孔質弾性, 境界積分方程式, 散乱特性

図-2 前方散乱振幅と Biot の定数 a

図-3 後方散乱振幅と Biot の定数 a

3.3 散逸パラメータの影響

図-4と図-5に,無次元化された散逸に関するパラメータ $b/(m\omega)$ を変化させたときの前方及び後方散乱振幅を示す. ここで, $b = \eta/k(\eta:流体の粘性,k:浸透率), m = \rho_f/\beta$ ($\rho_f:流体の密度,\beta: 孔隙率), \omega:角周波数である.また, \alpha = 0.6 としている.この結果から, <math>b/(m\omega)$ が大きくなるにつれて,散乱波における *LF*-波の寄与が大きくなるが, *LS*-波の寄与の変化は小さいことがわかる.

4. 結論

境界積分方程式を用いて Biot 物体中のキャビティによ る散乱振幅における各波動成分の寄与を計算した.その結 果,入射波が主として固体中を伝わる *LS*-波の場合でも, 圧力と固体変位の連成を支配するパラメータである Biot

図-4 前方散乱振幅と散逸パラメータ $b/(m\omega)(\alpha = 0.6)$

図-5 後方散乱振幅と散逸パラメータ $b/(m\omega)(\alpha = 0.6)$

の定数 α ,及び散逸の大きさに関するパラメータ $b/(m\omega)$ が大きくなると,散乱波の中において主として流体を伝わる LF-波の寄与が発生することがわかった.

今後,この現象が弾性波による非破壊検査や物理探査に どのような影響を与えるか検討したい.

参考文献

- Biot, M. A.: Theory of propagation of elastic waves in a fluid-saturated porus solid. I. Low-frequency range, J. Acoust. Soc. Am., Vol.28, pp.168-178, 1956.
- Yamamoto, K. and Kitahara, M.: Elastic wave scattering analysis of cavities in poroelastic media using threedimensional boundary element formulation, *Poromechanics* II, eds. J.-L. Auriault, et al., Balkema, pp.857-863, 2002.