膜分離活性汚泥法における分離膜近傍の溶存酸素消費特性の解明

1. はじめに

膜分離活性汚泥法はそれにより,膜面にケーキ層 が形成されが,同層は基質を消費する活性を有して いる.本研究はケーキ層内の溶存酸素濃度分をDO微 小電極を用いて測定し,ケーキ層の基質消費特性を 解明することを目的とする.

2. DO微小電極の原理

図1にDO微小電極の概略図を示す.DO微小電極は 2重のガラス管になっており,外側のガラス管をケ ーシングと呼びその中は電解質溶液(NaCl水溶液) で満たされている.そこに参照電極(Ag/AgCl線), ガードカソード(Ag線),内側のガラス管にはセン サーカソード(Pt線)が組み込まれている.(図-1). 参照電極には+極,センサーカソードとガードカソ ードには-極をつなげて電流を流す.

電流が流れることにより電解質溶液は電気分解され Cl⁻は+極の参照電極に電子を与える.それによ り DO 微小電極の先端から透過してきた溶存酸素と 反応し,酸化還元により電流が流れる.この電流は 溶存酸素濃度に応じた電流が流れ,この電流を電流 計によって測定することによって間接的に溶存酸素 濃度を知ることができる.

3.1 実験装置および実験方法

図 2 に実験装置の概略図を示す.水温調節装置に より恒温槽内の温度を一定に保つ、反応槽においては エアレーションポンプにより槽内を撹拌、曝気してい る.混合液容量は 30L となっており,さらに水位管 理槽によって水位を一定に保つ.運転条件は表 1, 人工基質の組成は表 2 に示す.

平膜モジュールは、ポリオレフィン製、孔径は 0.25 µのMF膜と、平均孔径 14µmの不織不膜を用いた. 膜面積は、170mm×200mmとした.水道管の塩化ビ ニルパイプを用い、膜と膜の間に 5mm 平方のメッシ ュを挟みこみ両側から処理水を得るようにしてある.

武蔵工業大学	学生会員	宇佐美	和也
武蔵工業大学	正会員	長岡 衫	谷

表 3 は取り出した膜モジュールを区別するため に,投与した基質,膜の種類,運転期間ごとに区別 し,それぞれを No.1 ~ No.3 とした.

投与した基質は case1 の組成を連続的し, MF 膜 を 13 日間運転し,取り出てケーキ層内の DO 濃度測 定を行った.そして,条件を変え基質の組成を case2 にし, FM 膜 4 日間, 不織布膜を 31 日間運転し取り 出して同様に DO を測定した.

図2 実験装置概略図

表1 運転条件

混合液温度()	20
フラックス(m/day)	0.1
TOC容積負荷(g/L/day)	0.5

表 2 基質の組成 (g/L)

物質名	case1	case2		
酢酸	31.5	31.5		
塩化アンモニウム	4.32	8.63		
リン酸二水素カリウム	1.25	1.25		
塩化鉄()6水和物	0.09	0.09		
塩化カルシウム	0.18	0.18		
硫酸マグネシウム	0.18	0.18		
塩化カリウム	0.18	0.18		
塩化ナトリウム	0.18	0.18		
重曹	49.8	49.8		

表3 測定ポイント

	基質の組成	膜の種類	運転期間
No.1	case1	MF膜	13日間
No.2	case2	不織布膜	31日間
No.3	case2	MF膜	4日間

6. 考察

3.2 溶存酸素濃度分布の測定方法

図 2 の実験装置から膜モジュールを取り出し,図 3 に示すように,容器に表 2 と同じ組成の基質を満 たす.容器内に水平に置き固定し,マイクロメータ ーに固定した DO 微小電極によりケーキ層内の溶存 酸素濃度分布を測定した.

4. 実験結果

反応層内の MLSS の変化を図4 に示す.0日から 14日の間は表2 で示した case1.17日から49日の 間は case2 の基質組成を投与した.プロット部分に 丸で示されているのは,DO を測定するため膜を取 り出したポイントである.

溶存酸素濃度分布を図 5 に示す.また点線で示しているのはケーキ層厚さである.

図7 溶存酸素濃度分布のグラフ(近似曲線)

膜面に近づくほど DO 濃度が高くなる分布を示したが,これは膜モジュール内に気泡が入り膜面より ケーキ層へ DO が供給されたためである.

それぞれの DO 消費傾向を比較のため,図7は図 6 で近似曲線を描き,ケーキ層内の DO 分布を近似 し,膜面における DO フラックスを以下の式(1)によ り求めたい.

$$J = D \frac{dc}{dz} | z = 0 \cdot \cdot \cdot (1)$$

 $J: O_2 \quad Flux(mg/cm^2 \cdot s)$

 $D: O_2$ 拡散係数(=1.8·10⁻⁵ cm² / s)

c: DO濃度(mg/l) z: 距離(cm)

表 4 に各条件において求めた DO フラックスの値 を示す.

不織布に付着したケーキ層が MF 膜に付着したものよりも,酸素消費活性が高いことが示されている.

表 4 O₂ フラックス

	No.1(MF)	No.2(不織布)	No.3(MF)
J∶O₂拡散(mg/cm²⋅s)×10⁻⁵	31.8	96	71.3

7.まとめ

微小 DO 電極を用いて不織布膜および MF 膜に付着したケーキ層の酸素消費活性を測定した結果,不 織布膜に付着した汚泥の方が高い活性を示した.