CFRPロッドと高強度コンクリートの付着力特性に関する研究

三菱化学産資㈱	正会員	加藤	貴久,	谷木	謙介
ケミカルグラウト(株)		吉田	宏,	横尾	充
University of Rhode	Island	David	l G. Tagg	art , G	eorge Tsiatas , Thomas J. Kim

1.はじめに

コンクリート構造物の劣化要因の一つに鉄筋腐食が挙げられ、これらを改修する際に鉄筋を用いる他に腐食 に強い・軽量などの特徴を有するCFRPロッドを用いるケースが考えられる。本研究では、鉄筋の代替品と してCFRPロッドを用いる際に重要な要因となるCFRPロッドとコンクリートの付着特性を把握する為 に、引抜き試験を行なった。試験は、CFRPロッド表面のスパイラル状凹凸ピッチをパラメータとした。更 に、比較の為に表面処理を行なわないCFRPロッドと鉄筋の試験も行なった。また、高強度コンクリートを 用いたのは、CFRPロッドは高い引張強度を有するので高強度コンクリートとの組合せがより効果的である と考えたためである。

2.試験方法

本試験に使用したCFRPロッドと鉄筋の材料物性値を表 - 1に、試験体数及び形状を表 - 2に示す。

表 - 1 材料物性値					
	CFRP በット	鈝 筋			
	(Lead Line)	小口口			
降伏強度	No Yield	275to480MPa			
終局強度	2,550MPa	480to690MPa			
弾性率	147GPa	200GPa			
炭素繊維含有率(Vf)	65%	-			
引張破断伸び	1.6%	10%			
熱膨張係数	0.7×10 ⁻⁶ /	11.7 × 10 ⁻⁶ /			

表 - 2	試験体数及び形状
-------	----------

Туре	試験体数	表面凹凸 ピッチ	外 径		
CI-8	3	8mm	10mm		
CI-10	3	10mm	10mm		
CI-12	3	12mm	10mm		
CS-0	2	Smooth	10mm		
Steel	2	-	12.7mm		

・CFRPロッド表面凹凸深さ:0.25mm

・コンクリート圧縮強度:65MPa

CFRPロッドとコンクリートの付着強度試験方法は、図-1に示す 引抜き試験とした。載荷速度は1.27mm/minとし、最大荷重後、最大 荷重の80%に荷重低下したところまで一定に引張りCFRPロッドとコ ンクリート間の相対変位量を測定した。測定は、自由端と引張治具端部 の2ヶ所とした。尚、試験方法はJSCE-E539を参考にしたが、試験の 目的から埋め込み長さは88mmと大きくした。

3. 試験結果

付着試験の一覧を表 - 3 に示す。図 - 2 は、引抜き試験中のCFRP ロッドの歪みが 0.05mm、0.10mm、0.25mmに達した時の各試験体の 平均付着力も併記したものである。表面に凹凸のないCFRPロッドが

図 - 1 CFRP ロッド引抜き試験体

最も付着力が低く2MPaを下回る結果となり、スパイラル状の凹凸を付けた3種類と鉄筋は、最大付着応力 度に達する前にコンクリートが割裂破壊した。また、全ての試験体において自由端側のCFRPロッドの変位 は引張治具側の変位が概ね0.4mmに達した時に発生し始める傾向が見られた(図-3)。

4.考察

CFRPロッドの界面破壊メカニズムを把握するためにCFRPロッドを軸方向に切断し、顕微鏡による観察を行なった(写真-1)。スパイラル状の凸部分は、主にエポキシ樹脂であるため凸部の破壊が先行するこ

キーワード: CFRPロッド,炭素繊維,付着,引抜き試験

·連絡先 〒100-0005 東京都千代田区丸の内一丁目8番2号 三菱化学産資(株)TEL03-5293-6639

表 - 3 付着試験結果					
	max(Mpa)	平均付着 力(MPa)	最大変位 (mm)	平均変位 (mm)	
CI-8-1	18.35		0.605		
CI-8-2	19.35	18.70	0.717	0.656	
CI-8-3	18.43		0.648		
CI-10-1	16.32		0.880		
CI-10-2	16.68	16.40	0.700	0.803	
CI-10-3	16.09		0.830		
CI-12-1	14.62		0.820		
CI-12-2	14.41	14.40	0.930	0.896	
CI-12-3	14.04		0.940		
CS-0-1	1.55	1 50	0.090	0.000	
CS-0-2	1.62	1.59	0.090	0.090	
Steel-1	22.18	23 80	0.060	0.053	
Steel-2	25.50	23.00	0.046	0.000	

とも考えられたが、荷重の増加に伴い凹凸部がコン クリートへ機械的に定着されたことにより最終的に コンクリートが割裂破壊となったと推察される。従 って、単位長さ当りのスパイラルが負担する荷重を 算出すると、

Ls =	L• (1·	+ ((D)/P) ²	²) (1)式	
Fmax =	max (۰D・L	.)	(2)式	
(1)((2)式	の関係	系より			
Fmax/Ls	= max	:(•D	•P)/	(P ² + (•D)²)	(3)式
ここで、	Ls : スル	゜イラル長	長さ	L : በッド	埋込長	(88mm)
	D:Dy	ド径(10mm)	P: ピッチ	<u>:</u>	

計算結果を表 - 4 に示す。

表 - 4 単位長さ当りのスパイラル負担荷重

ピッチP(mm)	スパイラル長 さ,Ls(mm)	平均付着力 (MPa)	Fmax/Ls (N/mm)
8	356	18.7	145
10	290	16.4	156
12	247	14.4	161

上記結果から(3)式を(4)式に置き換えること ができると考えられる。

Fmax/Ls max・P (4)式

5.まとめ

 CFRP ロッド表面全体の平均付着力はスパイラ ルピッチに概ね反比例するが、単位長さ当りのスパ イラル負担荷重はスパイラルピッチに概ね比例する。
CFRP ロッドは鉄筋と比較して低い付着力を示 したにも関わらずどちらも最大荷重時ではコンリー トは割裂破壊した。

今後は、この実験をベースに梁部材などでの補強効 果について検討する予定である。

図 - 2 平均付着力

写真 - 1 CFRP ロッド断面顕微鏡写真

【謝辞】

本研究は、米国の University of Rhode Island に て試験を行なった。試験と解析に協力頂きました同 大学の Mr.Andrew Winson, Mr.Arun Nair 及び各種 CFRPロッドの製造に協力頂いた㈱ヴァンテックの皆 様に感謝の意を表します。

【参考文献】

ICCI'02-The Third International Conference on Composites in Infrastructure San Francisco, California, June 10-12,2002