緩衝材を用いた炭素繊維シート接着工法による RC 劣化床版の補強効果

清 水 建 設 ㈱ 正会員 前田 敏也¹⁾ 新日本石油㈱ 正会員 小牧 秀之²⁾ 日本道路公団 正会員 上東 泰³⁾ 大阪大学大学院 フェロー 松井 繁之⁴⁾

1.はじめに

RC 床版の疲労補強として,炭素繊維シート(以下 CFS)接着工法が用いられている.しかし,土木学会では RC 床版の疲労補強への CFS の適用範囲を,二方向ひび割れが発生する進展期までとしており,ひび割れが網細化して角落ちが生じるような加速期への適用を示していない 1).

本報では,床版の疲労挙動に対して CFS の付着性状を向上させ,少ない CFS で疲労耐久性を向上させることができる,緩衝材を用いた CFS 接着工法 ²⁾の劣化床版への適用性について検討を行った.すなわち,予め輪荷重走行により初期損傷させた RC 床版に緩衝材を用いた CFS を接着し,その後,輪荷重走行試験を行って疲労寿命の評価を行った.

2.試験の概要

試験体および材料物性を図-1,表-1にそれぞれ示す.試験体は,幅 2m,長さ 3m,厚さ 18cm の RC 床版である.初期損傷は,荷重 180kN で 5 万回走行させて図-2に示すようなひび割れを発生させた.輪荷重走行位置でのひび割れ密度は $7.25m/m^2$ であり,一部のひび割れには角落ちが生じていた.床版下面の CFS接着面は,プライマー塗布後パテで不陸修正を行い,厚さが 0.5mm となるように緩衝材(柔軟性エポキシ樹脂)を塗布し,エポキシ含浸接着樹脂を用いて目付 $400g/m^2$ の高強度タイプ CFS を主筋および配力筋方向にそれぞれ 1 層ずつ接着した.ここで,CFS の補強量は旧建設省の指針 3 の標準工法の 2/3 である.

試験体の支持は,長辺方向(橋軸方向かつ荷重走行方向)を単純支持,短辺方向(橋軸直角方向)を横桁による弾性支持とした.載荷は,荷重 150kN で 10 万回走行後,荷重 180kN で 70 万回走行し,破壊しない場合には荷重 210kN でさらに 20 万回走行を行った.繰返し走行の各段階において,床版のたわみ,上面のコンクリート,主鉄筋,配力筋および CFS のひずみを計測するとともに,コンクリートのひび割れや CFS の付着状況を観察した.

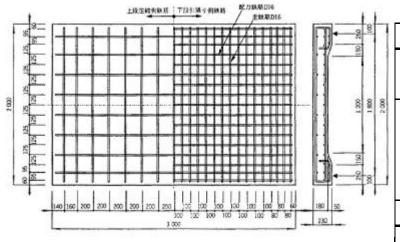
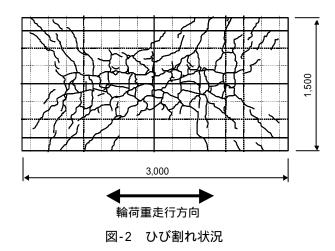


表-1 材料の物性

27 7011-91012			
	材料	材質・物性	
STATE OF THE STATE	CFS	引張強度	3,400N/mm ²
	$(400g/m^2)$	引張弾性率	$2.30 \times 10^5 \text{N/mm}^2$
	緩衝材	引張強度	1.7 N/mm ²
		引張弾性率	1.0N/mm ²
		せん断弾性率	1.0N/mm ²
		伸び率	123%
	鉄筋	D16 (SD295)	
	コンクリート	圧縮強度	31.4 N/mm ² (28 日)

キーワード:緩衝材,劣化床版,炭素繊維シート,疲労,補強

1) 〒105-8007 東京都港区芝浦 1-2-3 シーバンス S 館

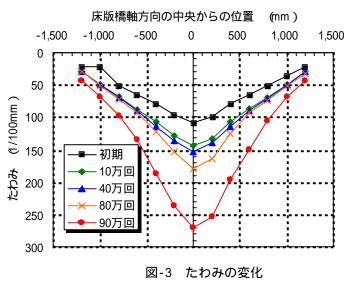

図-1 試験体の形状

2) 〒231-0815 横浜市中区千鳥町8

3) 〒194-8508 町田市忠生 1-4-1

4) 〒565-0871 大阪府吹田市山田丘 2-1

Tel.03-5441-0624 Fax.03-5441-0508 Tel.045-625-7250 Fax.045-625-7275 Tel.042-791-1621 Fax.042-791-2380 Tel.06-6879-7619 Fax.06-6879-7621


3. 試験結果および考察

(1)床版のたわみ

図-3 に活荷重による橋軸方向のたわみ分布の変化を示す.試験体は荷重 180kN では 80万回までたわみの急激な増大はみられず,床版としての耐力を有していたが,80万回以降中央部のたわみが大きくなるとともに CFS の剥離が生じてその領域が徐々に広がり,荷重 210kNの92 万回走行時にたわみが大きくなり試験を終了した.試験終了後床版の断面を切断し,押抜きせん断により破壊していることを確認した.

(2)疲労寿命の評価

図-4 に荷重 180kN で走行を続けた場合の疲労寿命の推定結果を示す.ここでは,過去に行

250 (CF-0 CF400S-D CF400S-D CF400S D C

走行回数(万回) 図-4 疲労寿命の推定

われた同様の試験結果 4)から走行回数によるたわみの変化を最小自乗法で近似し,たわみが 2 mm となる走行回数を疲労寿命とした.図には無補強試験体 $(CF-0)^4$)および初期損傷のない試験体 $(CF400S)^2$)の結果も併記する.疲労寿命は,無補強の 2 CF-0 で約 2 20 万回であるが,初期損傷のない 2 CF400S は緩衝材の効果によってたわみの増大が緩やかであり,疲労寿命も約 3 500 万回となっている.一方,劣化状態の加速期に相当する初期損傷を導入した 3 CF400S-D は,初期ひび割れの影響で全体的にたわみは 3 CF400S に比べて大きいが,たわみが増大する勾配は 3 CF400S 同様緩やかであり,疲労寿命も約 3 0 万回と推定される.ここで,東名高速道路における荷重実態調査から床版の疲労耐久性評価の基本荷重を 3 CF400S-D の 3 CF50 万回と算定されるため 3 0 が耐用年数は約 3 42 年となり,緩衝材の効果によって劣化が進行した床版に対しても,少ない 3 CFS 量で疲労耐久性が確保できるものと考えられる.

4.まとめ

緩衝材を用いることで標準工法の 2/3 の CFS で疲労耐久性が確保できる.

現状では CFS の適用範囲外となるような劣化を生じた床版に対しても補強効果が期待できる.

【参考文献】1)土木学会:コンクリート標準示方書[維持管理編],2001.1 2)前田,松井,岸本,小牧:緩衝材を用いた炭素繊維 シート接着工法で補強された RC 床版の疲労耐久性,土木学会第 57 回年次学術講演会講演概要集, -344,2002.9 3) 建設省土木研究所,炭素繊維補修・補強工法技術研究会:炭素繊維シート接着工法による道路橋コンクリート部材の補修・補強に関する設計・施工指針(案),1999 4)星島,太田黒,坂井,松井:損傷した道路橋床版の炭素繊維シートによる補強効果に関する実験的研究,橋梁と基礎 98-9,pp.23-28,1998.9 5)安松,長谷,篠原,長瀬:交通荷重状態を考慮した鋼橋床版の疲労設計に関する検討,第一回鋼橋床版シンポジウム講演論文集,pp.77-82,1998.11 6)前田,松井:鉄筋コンクリート床版の押し抜きせん断耐力の評価式,土木学会論文集,No348 -1,pp.133-141,1984.8