柔軟層を付与した炭素繊維シート巻き立て補強 RC 橋脚のじん性能

- 北海道大学大学院 学生会員 松本 浩嗣
- 株式会社オリエンタルコンサルタンツ 正会員 関谷 圭介
 - 北海道大学大学院 正会員 佐藤 靖彦
 - 北海道大学大学院 正会員 上田 多門

1.はじめに

連続繊維シートによる巻き立て補強は,既 設RC橋脚の耐震性能を向上させるものとし て広く用いられている工法である。本研究で は連続繊維シートとして炭素繊維シート(以 下 CFS)を用い,CFS に柔軟層を介して用い た巻き立て補強した橋脚の正負交番繰返し 試験を通じて,柔軟層がじん性能に与える影 響について明らかにする。

2.実験概要

実験供試体は標準的な RC 橋脚の 1/5 スケ ールモデルとした。補強を必要とする橋脚を 想定して,せん断補強筋比を小さくしてい る。各供試体間のパラメーターには柔軟層 の有無,シート補強量,帯鉄筋量をとった。

さらに,シート無補強供試体を1体加え,合計7体供試 体を用意した。供試体配筋図,CFS 配置図をそれぞれ Fig.1,Fig.2 に,各供試体の諸元を Table1 に,CFS,柔軟 層の物性値を Table2 に示す。

供試体を横向きに設置し,正負交番の繰返し載荷を行った。降伏変位の定義は最外縁に位置する軸方向鉄筋の 降伏時の変位 _yとし,その時の荷重を降伏荷重とする。 1 _yで3回正負繰返した後,2 _y,3 _yと測定荷重が 降伏荷重を下回り終局を迎えるまで載荷を行った。測定 項目としては荷重,変位の他に軸方向鉄筋.せん断補強 筋,CFS のひずみをひずみゲージで測定した。

3.実験結果と考察

各供試体の荷重 - 変位包絡曲線を着目変数別に Fig.3 に示す。無補強 S0 は降伏後すぐに耐力の低下が見られ, 載荷点付近において斜めひび割れを確認したことから, せん断破壊と認められた。他の供試体についてはいずれ も,CFS 破断後の急激な耐力低下による終局が見られた。 また,柔軟層を用いたときのじん性率は用いないときと

Table1 Detail of the specimens

Specimen	SO	S1	S2	S3	SS1	SS2	SS3
<i>fc</i> '(%)	31.8	29.4	29.1	30.3	37.0	35.2	32.3
s (%)	0.21	0.21	0.21	0.57	0.21	0.21	0.57
_{CFS} (%)	0	0.088	0.176	0.088	0.088	0.176	0.088
Main bar	D19	D19	D19	D19	D19	D19	D19
Hoop bar	D6	D6	D6	D10	D6	D6	D10
Sheets (piles)	0	1	2	1	1	2	1
Soft layer	×	×	×	×			

 f_c ': Compression strength of concrete

s: Hoop bar ratio to concrete

CFS : CFS ratio to concrete

Table2 Mechanical properties of CFS and soft layer

Material	Tensile strength (Mpa)	Elastic modulus (Mpa)	Thickness (mm)
CFS	3480	230	0.111
Soft layer	1.7	1	0.5

Fig.1 Steel arrangement

キーワード 柔軟層, CFS, せん断補強, じん性率
連絡先 〒060-8628 札幌市北区北 13 条西 8 丁目 TEL 011-706-6220 FAX 011-707-6582

Fig.3 Load-displacement envelope curve

比べて同等かそれ以下であるという結果が得られた。 供試体 S2,SS2 における破断時の CFS のひずみ分布を Fig.4 に示す。CFS の破断ひずみは 10,000~15,000 µ であり, S2 については CFS が破断ひずみに達していることが分かる。 一方,SS2 についてはひずみが分散され,ひずみ勾配がな だらかになるという柔軟層の効果は認められたものの,最 大ひずみが約 5,500 µ と,破断ひずみに達していないことが 分かる。

柔軟層を用いた供試体 SS2 の破壊様相を Fig.5 に示す。 Fig.5 のように,柔軟層を用いた供試体 SS1~SS3 は柔軟層 を用いていないものと比べて,CFS の破断が隅角部で多く 起きている傾向にあることが分かった。そこで SS3 につい て隅角部中央の CFS にひずみゲージを配し,その挙動を調 べた。その結果を Fig.6 に示す。せん断ひび割れの拡大に伴 って CFS には引張応力が作用するはずなのにもかかわらず, Fig.6 からは圧縮応力が作用していることが伺える。これは, 隅角部付近で CFS のずれ込みによって曲げ応力が発生して いることを意味する。すなわち,樹脂によって硬化した CFS がせん断面側にずれ込もうとすることによって曲げ応力が 発生する。

4.結論

-) CFS 巻き立て補強に柔軟層を用いると, CFS の応力分 布がなだらかになる。
-) CFS 巻き立て補強橋脚に柔軟層を用いると, CFS のず れ込みが大きくなることによって応力集中が増大する。
-) 今回のように面取り半径 50mm, CFS 総厚 0.111mm, 断面寸法 250mm 程度の条件下では、柔軟層を用いると 隅角部における破断がせん断ひび割れを跨ぐ位置より も早期に起こる可能性が高く,じん性率の向上は期待 できない。
-)柔軟層の効果については,面取り半径や CFS 総厚等の 条件を変えて実験を行って検討する余地がある。

Fig.4 CFS strain when CFS fail (S2,SS2)

Fig.5 SS2 failure aspect

Fig.6 CFS strain behavior at corner