炭素繊維シート曲げ補強 RC 梁における補強割合が耐力に及ぼす影響

九州大学大学院	学生会員	竹下	正一	九州大学大学院	フェロー	松下	博通
九州大学大学院	正会員	鶴田	浩章	九州大学大学院	正会員	佐川	康貴
(株)ピーエス三菱		上田	貴則				

1.研究目的

炭素繊維シート(以下, CFS)で曲げ補強した RC 梁では, CFSの剥離により終局に至る場合が多いことが知られ,様々な研究が行われている。本研究では CFS の積層数,主鉄筋量を要因として CFS で曲げ補強した RC 梁の曲げ載荷試験を行い, CFS 補強量の違いが剥離及び耐力に及ぼす影響を検討した。

2.実験概要

表-1に供試体の種類を示す。供試体は主鉄筋として異 なる鉄筋を用いた供試体にそれぞれ CFS 積層数を変え, CFS 補強量を変化させたもの合計 12 体である。図-1 に 供試体の形状寸法を示す。なお,いずれの供試体もスパ ン中央ー点載荷とした。供試体は主鉄筋として D13 D16, D22 (SD295A)の3種類を使用し,D6 (SD295A)の スターラップを 100mm 間隔に配置した梁の底面に CFS を貼付したものである。CFS のひずみ分布を測定し,剥 離開始の位置を把握するためにスパン中央部の 1000mm 区間では 50mm 間隔で,その他の区間では 100mm 区間 で検長 30mm のひずみゲージを底面の CFS に貼付した。 載荷試験時のコンクリートの圧縮強度は 29.3N/mm²,弾 性係数は 3.04 × 10⁴N/mm² であった。表-2 に CFS の力 学的特性を示す。

3.実験方法と測定項目

載荷は油圧式ジャッキで行い,荷重を単調増加させた。 測定項目は荷重,スパン中央の主鉄筋とCFSのひずみ, スパン中央のコンクリート側面の水平方向ひずみ,スパ ン中央の変位である。さらに,各荷重段階におけるひび 割れ発生状況,剥離進展状況,最終破壊状況を観察した。

4.実験結果および考察

(1)破壊状況

CFS を補強しない供試体は主鉄筋降伏後にコンクリ ートが圧壊する曲げ引張破壊となった。底面を CFS で 補強した供試体では D13-1, D16-1 を除き, CFS が剥離 し終局に至った。供試体 D13-1, D16-1 は, スパン中央 付近に CFS の剥離が確認できたが最終的には CFS の破 断により終局に至った。また,全ての供試体において曲 げひび割れと CFS の付着による斜めひび割れによって できたコンクリート片の支点寄りの位置に段差が確認で

表-1 供試体種類

供試体名	鉄筋の呼び名	CFSの 積層 数	主鉄筋比
D13-0	D13	0	0.70
D13-1	D13	1	0.70
D13-2	D13	2	0.70
D13-4	D13	4	0.70
D16-0	D16	0	1.13
D16-1	D16	1	1.13
D16-2	D16	2	1.13
D16-4	D16	4	1.13
D22-0	D22	0	2.20
D22-1	D22	1	2.20
D22-2	D22	2	2.20
D22-4	D22	4	2.20

図-1 供試体形状寸法と貼付方法

表-2 CFS の力学特性

キーワード:炭素繊維シート,補強割合,ピーリング作用

〒812-8581 福岡市東区箱崎6-10-1 Tel 092-641-3131 (内線 8654) Fax 092-642-3271

き,ピーリング作用(図-2)により CFS が剥離している ことが確認された。

(2)荷重-たわみ関係

図-3に主鉄筋に D16 を用いた供試体の荷重 - たわみ曲 線を示す。図より,主鉄筋降伏後も荷重は増加しており, 鉄筋降伏から終局までの荷重 - たわみ曲線の傾きは補強量 が多いほど大きくなっている。また,補強量が多いほど, 鉄筋降伏後の荷重の増分は大きくなっている。これは,補 強量が多いため断面内の引張力をより多く負担できること に加え,有効付着長が大きくなり剥離発生荷重が大きくな るためであると考えられる。

(3) CFS の応力と荷重の関係

図-4にスパン中央部の荷重とCFSの応力の関係を示す。 なお、CFSの応力は得られたひずみの値に弾性係数を乗じ て求めた。図において、鉄筋降伏時にCFS応力と荷重の 曲線の傾きが変化しており、鉄筋降伏後にCFSの負担す る引張力の割合が増加していることが分かる。また、CFS 補強量が同一の供試体では、主鉄筋量に依らず鉄筋降伏後 の傾きがほぼ等しく、終局時の応力の値もほぼ同じ値とな っていることから、鉄筋降伏後の梁の荷重の増分は、CFS 補強量のみに依存することが分かる。

(4) ひずみ分布および付着応力分布

図-5に供試体 D22-1 のひずみ分布,ひび割れ発生状況 の図,ひずみ差から求めた付着応力分布の図を示す。この 図より剥離が載荷点から支点寄りの所から剥離が発生し, 進展しているのが分かる。供試体 D13-1,D16-1 において も CFS の破断に至るまで同様の傾向を示していた。 (5)CFS 補強量

図-6に CFS 補強割合(=(*E_f*·*A_f*)/(*E_s*·*A_s*))と最大荷重の比 (CFS 無補強時 = 1とする)の関係を示す。なお図には既 往の研究結果¹⁾についても併せて示す。図より CFS 補強割 合が大きくなると最大荷重は増加するが最大荷重比の増加 率は減少することが分かる。

5.結論

- (1) CFS 曲げ補強 RC 梁の鉄筋降伏後における荷重の増分 は CFS 補強量に依存する。
- (2)CFS 補強割合が大きくなるにつれ、最大荷重比の増加割 合が小さくなる。

【参考文献】

竹下正一,松下博通,鶴田浩章,佐川康貴:炭素繊維シート補強 RC 梁の曲げ補強効果に関する一検討,第57回年次学術講演会概要集 V-354,2002.10

