アクティブ赤外線サーモグラフィ法における加熱方法に関する検討

- 住友大阪セメント㈱ 正会員 〇中村 士郎
- 大阪大学大学院工学研究科 正会員 阪上 隆英
 - ㈱中研コンサルタント 正会員 鈴木 宏信
 - (㈱コンステック 正会員 込山 貴仁
 - 近畿日本鉄道㈱ 正会員 原 文人

1. 目的

対象物に強制的な熱波動を与え、欠陥部の断熱効果により生じる特異温度場を赤外線サーモグラフィで検出 するアクティブ赤外線サーモグラフィ法は、トンネルなど気温変化の小さい構造物にも適用可能であり、近年 適用事例が増加している.本研究では、はく離欠陥診断システムの構築を最終目的とし、欠陥の検出に適した 加熱方法に関する検討を行った.

2. 室内加熱実験

(1) 実験概要

欠陥の検出に適した加熱条件を設定するため,高出力な灯油焚きの放射式直火形ヒータ(ブライトヒータ;オリオン機械㈱製,熱出力 38.8kW)を用いた人工欠陥供試体に対する室内加熱実験を実施した.人工欠陥供試体の概要を図1に示す.本研究では最大深さ 50mm までのはく離の検出を目指しており,人工欠陥供試体には深さ 50,100mm の位置に,厚さ2,5,10mm のポリエチレンシートを模擬はく離として埋設している.また,熱電対をコンクリート表面及び内部に設置した.この人工欠陥供試体に対して,加熱距離 2m で 10,20 分,加熱距離 0.5m で 0.5,1分の加熱を行い,赤外線サーモグラフィ(検出波長 8~13 μ m, NETD 値 0.1℃)により表面温度分布を計測,欠陥の検出を行った.

図1 人工欠陥供試体

2m

0.5m

加

熱

距

(2) 実験結果

各加熱条件下における深さ 50mm,厚さ 5mm の模擬はく離欠陥の検出結果 を表1に示す.深さ 50mm の模擬はく離欠陥の検出に必要な加熱時間は,加 熱距離が 2m の場合 20 分,0.5m の場合 1 分以上であった.欠陥が検出可能 であった 2 ケースの加熱停止から 25 分後の温度分布画像を図2,3 に示す.

加熱距離,加熱時間に関わらず,深さ50mmの欠陥 が検出可能になるのは,加熱を停止してから15分 以上経過した時点であった.欠陥が検出できた2 ケースの表面及び深さ50mm地点でのコンクリー ト温度の経時変化を図4,5に示す.加熱距離に関 わらず深さ50mm地点での温度上昇は極めて緩や かであった.特に加熱距離0.5mの場合,1分とい う短い加熱期間中,内部温度は全く上昇しないも のの,加熱強度が高いため表面温度は大きく上昇

図2 温度分布画像 (加熱距離2m、加熱時間20分)

温度分布画像より、O:検出可 ×:検出不可

表1 欠陥検出状況

(欠陥深さ50mm、厚さ5mm)

10

×

0.5

х

加熱時間(分)

20

Ο

1

Ο

キーワード 赤外線サーモグラフィ,はく離,強制加熱,冷却,内部温度 連絡先 大阪市大正区南恩加島7-1-55 住友大阪セメント㈱セメント・コンクリート研究所 TEL06-6556-2275 し、その結果、表面温度が下降する冷却期間中にも内部への熱伝導が 継続され、深さ50mmの地点の内部温度が徐々に上昇したことがわかる. 加熱停止後15分以上経過した後に欠陥検出が可能になったのは、加熱 ムラの影響が軽減すると共に冷却中も内部への熱伝導が継続し、欠陥 部の表面温度差が徐々に増大したためだと考えられる.なお、深さ 100mmの欠陥はどの加熱条件においても検出できなかった.

以上の結果より,加熱距離を短くすることにより欠陥の検出に必要 な加熱時間が短縮できることが明らかになった.一方で,同一のヒー タを用いて加熱距離を短くするだけでは,加熱ムラが顕著となり広範 囲を検査することは難しい.本実験で用いたブライトヒータは加熱板 の寸法が "600×^h450mm 程度であるが,加熱距離 2m の場合には 1×1m の供試体のほぼ全面を均質に加熱できたのに対して,加熱距離を 0.5m とした場合には,図3からも明らかなように供試体全面を加熱するこ とはできず,加熱された範囲内でもムラが非常に大きかった.

3. 屋外加熱実験

(1) 実験概要

作業用トンネル内に設置した模擬はく離欠陥を内在する供試体¹⁾に 強制加熱を行い,赤外線サーモグラフィによる欠陥の検出を行った. 強制加熱に用いたヒータは,室内実験で使用したものとほぼ同じもの を2台使用し,**写真1**に示すよう加熱距離を0.5mとした.また,加 熱ムラを軽減するため,ヒータを供試体に対して水平移動させながら 加熱を行った.ヒータの移動速度は0.5m/minとし,実質的な加熱時 間を2分程度とした.

(2) 実験結果

加熱終了後 20 分経過時の温度分布画像を図6 に示す. 深さ 20, 30mm の欠陥と共に深さ 50mm の欠陥が室内実験時よりも明瞭に検出可能で ある.これは,室内実験時よりも加熱強度,加熱時間が大きいこと,

移動しながら加熱を行うことにより,加熱ムラのほとんど無い均質な画像が得ら れたことなどが原因と考えられる.なお,屋外実験においても 50mm の欠陥が検 出できたのは,室内実験と同様に加熱終了後約 15 分経過してからであった.

4. まとめ

(1) 熱出力 38.8kW のヒータを用いた場合, 深さ 50mm の模擬はく離欠陥を検出 するのに必要な強制加熱時間は, 加熱距離 2m において 20 分, 0.5m において 1 分以上であり, 検出が可能になるまでに加熱停止から 15 分程度を要する.

(2)加熱距離を一定に保ちながら、ヒータを移動させることにより加熱ムラを 軽減することが可能である.

参考文献

1) 原文人ら;赤外線サーモグラフィ法によるトンネル覆工の欠陥検出実験,土木学会第58回学術年次講演会

<謝辞>本研究は(社)遠赤外線協会「アクティブ赤外線コンクリート構造物診断システムの開発に関するフィー ジビリティ」委員会の活動の一部である.関係各位に御礼申し上げます.

図5 コンクリート温度の経時変化 (加熱距離0.5m,加熱時間1分)

写真1 強制加熱状況(加熱距離0.5cm)

図6 温度分布画像 (加熱距離0.5m、移動加熱)