応用要素法(AEM)における RC 梁のせん断破壊挙動の改善

中央大学	学生会員	中戸川	佳正
東京大学生産技術研究所	正会員	目黒	公郎

はじめに 1

構造物の崩壊メカニズムを理解することは、地震被害を はじめとする災害や事故による被害を軽減する上で不可欠 であり,そのためには,崩壊過程を追跡できる解析手法が必 要となる.目黒・ハテムが開発した応用要素法(Applied Element Method; AEM¹⁾は, その可能性が期待される解析手 法の 1 つであり, 微小変形から大変形・崩壊に至るまでの-連の挙動を統一的に扱うことが可能である.

ところで,RC 梁の代表的な破壊形態の一つであるせん断 破壊は,斜め引張破壊型とせん断圧縮破壊型の二つに大別 されるが,いずれも斜めひび割れの発生と進展に特徴づけ られる.既往の AEM を用いたせん断破壊する梁の解析にお いても、斜めひび割れの発生と進展は確認されるが、進展に 時間がかかり、急激な荷重の低下が見られなかったり、斜め 引張破壊型とせん断圧縮破壊型の中間的な挙動をする梁の 解析では,アーチ機構への移行がスムーズに行われなかっ たりしている.そこで本研究では,上記の問題点の改善を行 い,その妥当性を確認する.

応用要素法の概要 2

AEM では解析対象を仮 想的に分割した要素の集合 体として取り扱い,各要素 は接線・法線方向の 2 つ 1 組のバネにより接合されて いる(図 1). 解析に用いたコ ンクリートの材料モデル²⁾ を図2に,鉄筋の材料モデ ルを図3に示す.

AEM ではクラックの発生と進展は要素間にあるバネが 独立に破壊していく事により表現されるため,クラックの 発生位置とその方向をあらかじめ仮定する事無く進行性破 壊現象を追跡できる.また RC を扱う場合,鉄筋位置に鉄筋 の材料モデルを適用したバネを並列に配置することで、鉄筋 の位置と量を直接考慮した解析が可能となる.

2 コンクリートの材料モデル図3 鉄筋の材料モデル 解析対象 3

せん断スパン比を徐々に小さくしていき,典型的な斜め 引張破壊型から,斜め引張破壊型とせん断圧縮破壊型の中 間的な挙動を示すものまで,せん断破壊する RC 梁のシミュ レーションを行う.解析対象は,せん断補強筋なし・一点-

方向載荷・単純支持で行われた RC 梁の実験^{3,4)}とする. 供試体の配筋図は図4、緒元は表1に示す通りである。

表 1 供試体の諸元一覧

	せん断	せん断			引張鉄筋		圧縮鉄筋	
供試体	スパン	有効高さ	スパン比	圧縮強度	鉄筋径,	ヤング率	鉄筋径,	ヤング率
917	a(mm)	d(mm)	a/d	f'c(MPa)	本数	Es(GPa)	本数	Es(GPa)
No.1	850	160	5.31	32.7	2D25	178	2D19	180
No.2	700	160	4.38	27.7	2D22	187	2D13	181
No.3	550	160	3.44	30.0	2D22	179	2D13	170
No.4	475	160	2.97	31.5	2D22	179	2D13	170
No.5	1000	260	3.85	22,7	3D29	182	2D10	182

既往の AEM の問題点と改善策 4

AEM ではひび割れ発生による応力解放をバネ破壊後、そ れまでバネが保持していた引張力と同じ大きさの反対方向 の力を,そのバネの両端の要素に与える事によって表現さ れ,その解放力は簡便的に次のステップで増分変位と一緒 に与えている.しかし,実際はバネの破壊による解放力がま ず作用し,その影響も受けた変位増分が求められるべきで ある. Start

そこで改善策として,バ ネ破壊後,同じステップ内 で解放力のみを与えるルー プを導入する.これにより. 破壊はより進展しやすくな り,破壊の顕著な局所化も 期待される.

また,バネ1本の破壊が 解析結果に及ぼす影響が大 きくなり,解析結果が不安 定になる事を防ぐため,解 放力のみを与えるループの 繰り返しに制限を設けた.

5 解析結果及び考察

改善後の解析の流れ 図 5

ここでは、No.2と No.5の実験と解析における荷重-変位関 係図,ひび割れ図を示し考察する.変位としては,No.2では 載荷点直下の引張縁の鉛直変位を,No.5 では載荷点直下の Unloading 圧縮縁の鉛直変位を取っている.荷重-変位関係図中の点は, 斜めひび割れとなる部材軸方向のひび割れが初めて発生し た点と載荷点付近にひび割れが到達した点を表し,その間 に発生したひび割れを赤で、部材軸方向のひび割れ発生以 前に発生したものを緑でひび割れ進展図中に示している.

典型的な斜め引張破壊型である No.2 の実験と解析結果を 示す.図 6 と図 7(a)を見ると,実験は,変位 3.81mm・荷重 103kN の点で斜めひび割れが発生と共に急速に載荷点付近 まで到達し,急激に荷重が低下する.解析は,改善前では斜 めひび割れ発生から載荷点付近到達までが変位 3.09~ 5.47mm(図6の - 間)に対応する.それに対し,改善後で

キーワード:応用要素法,せん断,斜め引張破壊,鉄筋コンクリート,数値解析,ひび割れ 連絡先 〒153-8505 東京都目黒区駒場 4-6-1 東京大学生産技術研究所 目黒研究室 TEL: 03-5452-6437 は対応する変位が 3.59~4.20mm(図6の - 間)に変化し, 斜めひび割れの進展が明らかに速くなり,急激な荷重の低 下も表現できるようになった.また,改善後において,実験 に見られる圧縮鉄筋に沿った水平なひび割れが同様に確認 できる.さらに,図7(b)から,改善後の方は,ひび割れが局所 化している様子が分かる.

斜め引張破壊型とせん断圧縮破壊型の中間的な挙動をす る No.5 の実験と解析結果を示す.図8 と図9 を見ると,実験 では,変位 3.21mm・荷重 144kN の点で斜めひび割れが発 生・進展し,第一ピークを迎えている.一方,解析は改善前で は斜めひび割れ発生から載荷点到達までが変位 2.30~ 4.40mm(図8の - 間)に対応し,改善後はこれが変位2.10 ~ 2.30mm(図6の - 間)に変化した.斜めひび割れの進展 が明らかに速くなり,それに伴う荷重の急激な低下により 実験と同様,第一ピークを迎えている事がわかる.ここで、 解析において第一ピークが低いのは,ダウエル効果などの 影響が考慮されていないためだと思われる.また,実験は第 ーピーク後,アーチ機構に移行することにより,コンクリー トが圧縮力に耐え荷重が再び上昇している.解析は,斜めひ び割れ進展後の図 10 を見ると、改善前ではアーチ機構へ移 行できていない.一方改善後では,はっきりとしたアーチが 見られ,また図 11 から斜めひび割れの進展に伴い圧縮縁の 圧縮力は一度低下するが,その後,再び上昇している事より アーチ機構へ移行しコンクリートが圧縮力に耐え,荷重が 上昇する様子が確認できる.

5 **まとめ**

本研究では,解放力のみを与えるループの導入と制限を 設けることにより,典型的な斜め引張破壊型の梁では,斜め ひび割れの進展が速くなり,それに伴い荷重が急激に低下 する斜め引張破壊の破壊モードを精度よく表現できるよう になり,ひび割れの局所化も達成された.さらに,斜め引張 破壊型とせん断圧縮破壊型の中間的な挙動を示す梁では, これまで見られなかったアーチ機構へ移行し,圧縮縁のコ ンクリートが圧縮力に耐える事による荷重の回復が見られ, 破壊モードを表現できるようになった.今回の改善によっ て,AEM においてせん断破壊モードがより適切に表現でき るようになったと言える.

- 参考文献
- Meguro.K Tagel-Din Hatem: Applied Element Method for Structural Analysis Theory and Application for Linear Materials, Journal of Structural Mechanics and Earthquake Engineering, JSCE, Vol647, pp31-45, 2000.4
- 2) 岡村 甫,前川 宏一:鉄筋コンクリートの非線形解析と構成則,技 報堂出版
- 3) 山谷 敦,中村 光,檜貝 勇:回転ひび割れモデルによる RC 梁の せん断挙動解析,土木学会論文報告集,No. 620, pp187-199, 1999.5
- 山谷 敦,中村 光,檜貝 勇:軸方向圧縮力を受ける RC 梁のせん 断挙動に関する実験的研究,土木学会論文報告集,No. 697, pp143-160, 2002.2