コンクリート部材の電気防食における陽極システムの性能評価

早稲田大学大学院	学生会員	〇杉ノ上 大我
早稻田大学理工学部	学生会員	秋山康夫・内田雅隆
早稻田大学教授	フェロー	関博
(株)ピーエス三菱	正 会 員	青山 敏幸

1. はじめに

電気防食工法の外部電源方式において陽極材の耐久 性を評価する必要があるが、現在研究例が少なく、そ の多くが NACE の基準に基づいた陽極材のみに注目し た耐久性能評価であり、周辺のオーバーレイ材などを 含めた陽極システムとしての耐久性を評価する必要が ある.本研究では、チタンメッシュ方式を取り上げて、 コンクリート供試体に設置した状態で急速試験を実施 することにより、陽極システムの耐久性能評価を試み、 以前行った NACE の試験結果との比較を行った.

2. 実験概要

図1の形状で示されるチタンメッシュ方式による電 気防食を施した供試体を,表1に示す条件で,実構造 物の供用期間を想定した所定の積算電流密度が得られ るまで急速化して通電を行った.通電中に陽極材の通 電電位およびインスタントオフ電位を定期的に測定し, 通電終了後に陽極材のアノード分極試験を行い陽極シ

供試体	測定期間	積算電流密度	電流密度	Cl_曹	星震彊悟
供訊件	(日)	$(mA \cdot h/m^2)$	(mA/m^2)	(kg/m^3)	來路垛児
0-0AS	S o	0	0	0	
0-0BS	0	U	5.47		
1-1AS	28		21,909	0	古泪古泪
1-2AS	56		10,955	0	向洫向迹
1-3AS	110	14,723,000	5,477	0	C 10°C)
1-3BS	112	(42mA/m ² ×40年)		5.47	40 C
1-4AS	102		3,371	0	「「「「」」「「」」「「」」「」」「「」」「「」」「「」」」「「」」」「「」」」「」」」「」」「」」」「」」」「」」」「」」」「」」」「」」」「」」」「」」」「」」」「」」」」
1-4BS	102			5.47	
2-3AS	7,3	7,361,000	2,738	0	
2-3BS	112	<u>(21mA/m²×40年)</u>		5.47	
0-0AW	0	0	0		
0-0BW	N U	0	U	9	
1-1AW	28	8 10,429 7,008,000 6 (20mA/m ² ×40年) 5,214	10 429	0	
1-1BW	20		10,423	9	
1-2AW	V 56		5,214	0	
1-2BW				9	
1-3AW			2,607	0	水山浸清
1-3BW				9	小小人员
2-3AW	/ 112 / /	14,016,000	5,214	0	
2-3BW		(40mA/m ² ×40年)		9	
3-3AW		28,032,000	10 4 2 9	0	
3-3BW		<u>(80mA/m²×40年)</u>	10,423	9	
1-4AW 1-4BW 180	38,544,000	8 9 2 2	0		
	(110mA/m ² ×40年)	0,022	9		

表1 供試体一覧

ステムの耐久性を評価した.

3. 実験結果

(1) 陽極電位測定結果

図 2 に通電電位およびインスタントオフ電位の経時 変化の一例を示す.図 2 によると供試体 1-3AW,1 -3BW において鋼材のインスタントオフ電位と鋼材の 通電電位はほぼ一定で大きな変化はないが,陽極材の インスタントオフ電位は積算電流密度の増加とともに, わずかな上昇傾向にある.また,1-3BWの陽極材の通 電電位はほぼ一定で変化していないのに対し,供試体1 -3AWの陽極材の通電電位は上昇傾向にある. Cl⁻の 存在が陽極材周辺コンクリートの比抵抗上昇を抑え, 電流を流れやすくしているためと考えられる.このよ

キーワード:電気防食、陽極材、陽極システム、チタンメッシュ方式、急速試験 連絡先:〒169-8559 新宿区大久保3-4-1 早稲田大学理工学部51-16-09 関研究室 TEL 03-5286-3407 FAX 03-3208-8749 土木学会第58回年次学術講演会(平成15年9月)

V-056

うな傾向はほぼ全ての供試体に共通して表れた.

図 3 にインスタントオフ電位の経時変化を示す. NACE の基準によると,陽極材電位が通電前の初期電 位より 4V 以上高くなると,陽極材が劣化してその性能 が得られなくなるといわれている.図3における NACE 試験と比較した場合,本試験における陽極材の電位は 大きい値を示しているが,通電開始前の陽極材の電位 は、約 - 0.5~0 V(vs.SCE)の値であり,全ての供試体に おいて初期電位に対する電位差は 4V を超えていない.

(2) 陽極材のアノード分極試験

図 4 に通電終了後に行った陽極材のアノード分極試 験の結果を示す. 陽極材周辺では水の電気分解による

 $2H_2O \rightarrow O_2 + 4H^+ + 4e^-$

の反応が起こり,陽極材周辺の局部的なpH低下を引き 起こし,コンクリートを劣化させると考えられる.図4 から約500~700mV(vs.SCE)付近に分極曲線の変曲点が 見られることから,この電位付近で酸素発生反応が生 じていると思われる.標準状態での水の電気分解によ る酸素発生反応の平衡電位は,ネルンストの式より

 $E_{02} = 0.994 - 0.0591 \text{pH}$ (V vs.SCE) で与えられ、これらの電位における pHはおよそ 5~8

であることから, 陽極材周辺の pHは実際に低下していると考えられる.また,塩素ガス発生電位は 1119mV (vs.SCE)であるが,塩化物を含む供試体において,この電位付近から曲線の挙動が異なり,実際に塩素ガスが発生しているのが確認できる.

曲線を同じ電位で比較した場合,劣化した陽極材は 不動態化して曲線が左側に移行し電流が流れにくくな ると思われる.高温高湿暴露では大電流により試験を 急速化したほど,水中浸漬では積算電流密度によらず

通電時間が長いほど陽極材が劣化し、暴露環境によっ て異なる傾向が現われた.今回の実験結果では,陽極 システムの耐久性能評価試験は水中浸漬試験より,実 環境に近い高温高湿暴露条件での試験の方が,より実 現象に近い状態を再現できた.

4. まとめ

(1) 大電流印加により陽極周辺コンクリート比抵抗が 徐々に増加したが,塩化物を含む供試体ではその割合 が少なかった.

(2) チタンメッシュ陽極の初期電位に対するインスタントオフ電位は 4V を超えなかった.

(3) 水中浸漬よりも,高温高湿暴露環境での性能評価 試験が実際に近い環境を再現できると思われる.

参考文献

1) NACE Standard TM0294-2001 Item No.21225

2) 佐古武彦:コンクリート部材の電気防食における陽極材の性能評価方法について 土木学会第57回年次学術講演会講演概要集 V-576