横拘束コンクリートの一軸圧縮耐荷特性に与える鉄筋腐食の影響

京都大学 学生会員 福田 貴志 正会員 山本 貴士 正会員 服部 篤史 フェロー 宮川 豊章

1. 研究目的

本研究では,電食により鉄筋腐食をモデル化した RC 一軸圧縮供試体と,これに対して連続繊維シート巻立て 補強を適用した供試体について,一軸圧縮試験を実施し,鉄筋腐食とこれにともなう腐食ひび割れが横拘束コン クリートの応力-ひずみ関係に与える影響を検討した。

2. 実験概要

供試体は,直径 15cm,高さ 30cm の円 柱供試体とし 軸筋に異形鉄筋(SD295A, D10)をかぶり 15mm で 4 本(鉄筋比 p=1.61%)配置した。コンクリートの目標 配合強度はf^cr=30N/mm²とした。載荷は, 単調一軸圧縮試験とし,荷重と供試体高 さ中央部 20cm の区間の軸方向変形量を 測定した。供試体一覧を表1に示す。

2.1 腐食ひび割れ 腐食は電食によりモ

供試体 名	要因		腐食ひび 割れ幅 平均 (mm)	鉄筋腐 食量(4本 平均) (%)	コンク リート強 度 f _{co} (N/mm ²)	ヤング係数 E _{co} (× 10 ⁴ N/mm ²)	<mark>最大応</mark> カ f _{cc} (N/mm ²)	f _{cc} / f _{co}	破壊形式
C-SP			無 (0.0mm)	無 (0.0%)	24.0	3.25	32.8	1.37	1
C-SS		スパイラル筋				4.92	32.7	1.36	1
C-SC1		CF 1層				3.37	36.8	1.53	3
C-SC2		CF 2層				3.31	37.5	1.56	3
C-SA		AF 1層				3.34	36.2	1.51	3
C-AP	腐ひ割有り		0.35	6.08	39.9	1.79	29.2	0.73	2
C-AS		スパイラル筋	0.07	2.13		2.32	38.5	0.96	1
C-AC1		CF 1層	0.21	4.89		2.38	37.3	0.93	3
C-AC2		CF 2層	0.27	5.53		2.35	39.7	0.99	3
C-AA		AF 1層	0.37	8.94		3.07	35.1	0.88	3
破壊形式	(1)圧潰	(2)脆性的	りに圧潰	(3)シ-	ート破断			

表1 供試体一覧及び試験結果

デル化(積算電流量:鉄筋表面積あたり1.0A・hour)し,健全供試体と軸鉄筋方向の腐食ひび割れが平均0.26mm(質量 減少率:平均5.8%)のものとした。

2.2 横拘束筋 横拘束筋は,既存部横拘束筋を想定した丸鋼スパイラル筋 (SR235, ϕ 6mm)を横拘束筋体積比 ρ_v =1.0%で用いたものと,既存部横拘束 筋 は配 筋 せず,巻立て補強を想定して炭素繊維シート(200g/m², f_u =3430N/mm², E_f =2.30kN/mm²)を横拘束筋体積比 ρ_v =0.3(1 層),0.6%(2 層) で巻き立てたもの,およびアラミド繊維シート(280g/m², f_u =2060N/mm², E_f =1.18kN/mm²)を ρ_v =0.5%(1 層)で巻き立てたものとした。

3. 実験結果および考察

腐食ひび割れ幅,鉄筋の質量減少率の測定結果および載荷試験結果を 表1にあわせて示す。

3.1 ヤング係数 腐食ひび割れ幅とヤング係数 E_{cc}の関係を図1に示す。 腐食供試体の方が健全よりもコンクリート強度が大きいものの、いずれの 要因でもヤング係数が健全より低下する傾向にある。供試体内にあらかじ め存在する腐食ひび割れによってコンクリートが軟化していると考えら れる。また,スパイラル筋とアラミド1層を除いて、ひび割れ幅とヤング 係数に,横拘束筋によらない比例関係が見られる。最大応力の1/3をこえ ない領域では,いずれの横拘束筋においても,まだ有効な横拘束力がはた らいておらず,同程度の低下率になったと考えられる。

3.2 最大応力 最大応力 f_{cc} は,それぞれの供試体のコンクリート強度 f_{co} で無次元化した最大応力比 f_{cc}/f_{co} を指標として検討した。なお,連続繊維

キーワード:鉄筋腐食、横拘束コンクリート、一軸圧縮耐荷特性、応力-ひずみ関係、連続繊維シート 連絡先:〒606-8501 京都市左京区吉田本町 TEL 075-753-5102 FAX 075-752-1745 シートを巻き立てた供試体は,初期勾配から変曲点を経由し,その後も応力が上昇しつづけ,連続繊維シートの破断により終局に至る応力-ひずみ関係となったことから,既往の研究¹⁾を参考に,初期勾配から二次勾配への変曲点を最大応力点とした。

腐食ひび割れ幅と最大応力比の関係を図2に示す。いずれの横拘束筋においても,腐食によって最大応力比が低下した。特に,スパイラル筋の低下率は,軸筋の腐食ひび割れ部分がコアコンクリートとなる連続繊維シート 横拘束コンクリートよりも大きくなった。スパイラル筋の腐食による拘束力の低下と,軸筋とスパイラル筋によ る腐食ひび割れのコアコンクリート内部への進展が,耐荷性状に影響を与えたと考えられる。

3.3 応力 - ひずみ関係 横拘束筋にスパイラル筋を用いた供試体を対象として,横拘束コンクリートに関する既往のモデル式²⁾を用いて,鉄筋腐食が応力 - ひずみ関係に与える影響の考慮方法について検討した。

既往式では,有効に拘束されるコアコンクリートの最小有効断面積 A_e とス パイラル筋で囲まれる領域の断面積 A_{cc} の比である有効拘束係数 k_e を,横拘束 の効果を表す係数として用いている。このとき,最小有効拘束断面積は,**図**3 のように横拘束筋直下の接線角を45°と仮定した放物線により表しているが, 3.2 から軸筋と横拘束筋の腐食により,コアコンクリートがあらかじめ損傷を 受けており,有効に拘束されるコアコンクリート領域が小さくなっている可能 性が示された。そこで,横拘束筋直下の接線角を θ (45°)とおき,次式(1)の ように有効拘束係数 k_e の低下を表現した。

$$k_e = \frac{A_e}{A_{cc}} = \frac{\left(1 - \frac{s'}{2d_s} \frac{1}{\tan\theta}\right)^2}{1 - \rho_{cc}} \qquad \rho_{cc} : {\bf m} {\bf 5} {\bf 6} {\bf 5} {\bf 5} {\bf 6} {\bf 5} {\bf$$

結果を図4 に示す。 *θ*=45°として横拘束筋の腐食(鉄筋断面積の減少) のみを考慮した場合,健全モデルからの低下はほとんど見られなかった。 次に,横拘束筋の腐食に加え,有効拘束係数の低下を考慮した場合,実験 結果に近い関係が得られた。このときの角度は*θ*=25°であり,図3に示 す状態であった。載荷終了後の供試体は損傷が大きく,試験後の観察によ ってこの角度を確認することはできなかったが,腐食ひび割れによるコア コンクリートの損傷を,有効拘束係数 *k*eの低減という形で取り入れるこ とにより,鉄筋腐食を生じた横拘束コンクリートの応力 ひずみ関係をモ デル化できる可能性がある。

4. 結論

(1) いずれの横拘束筋においても,腐食ひび割れを有する方が,健全に比べてヤング係数および最大応力比*f_{cc}/f_{co}*が低下した。特に,軸筋とスパイラル筋が腐食したものでは,最大応力比の低下が大きく,スパイラル筋の腐食による拘束力の低下と,軸筋とスパイラル筋による腐食ひび割れのコアコンクリート内部への進展が,耐荷性状に影響を与えたと考えられる。

(2) 腐食ひび割れによるコアコンクリートの損傷を,既存の応力 ひずみ関係に有効拘束係数 k_eの低減という形で 取り入れることで,鉄筋腐食を生じた横拘束コンクリートの応力 ひずみ関係をモデル化できる可能性がある。 参考文献

1) 細谷 学,川島一彦,星隈順一:炭素繊維シートで横拘束したコンクリート柱の応力度-ひずみ関係の定式化, 土木学会論文集,No.592/V-39,pp.37-52,1998.5.

2) J.B.Mander, M.J.N.Priestley, and R.Park: Theoretical Stress-Strain Model for Confined Concrete, Journal of Structural Engineering, Vol.114, No.8, pp.1804-1826, August. 1988.

V-050