マイクロシミュレーションによる地区の交通渋滞改善策の比較評価について

東京商船大学 学生員 前田 鉱太 東京商船大学 正会員 高橋 洋二 東京商船大学 正会員 兵藤 哲朗

1.はじめに

駅周辺部や都心商業業務地区などの交通が集中す る地区においては、交通渋滞改善策を見出すことが 早急の課題となっている。一般に、地区レベルの交 通改善策の場合、一方通行、信号現示、右左折専用 レーンの設置などのキメ細かな交通施策を評価する ことが求められるが、従来の四段階推定法ではこの ような施策の効果を検証することは困難である。

そこで本研究は交通マイクロシミュレーション手 法を用いて、ボトルネック交差点を含む地区に焦点 を当てて、複数の交通施策の効果を比較検証するこ とを目的とする。

2. 研究対象地区

神奈川県秦野駅前に存在する2つの渋滞交差点を 含むおおむね 80ha を対象地区として設定した。図1 に両交差点の位置関係を示す。

3.交通マイクロシミュレーションの概要

マイクロシミュレーション手法として、本研究で は WATSim というソフトを利用しており、表 1 にそ の概要を示す。

表 1 WATSim の概要

入力データ	1時間ごとの交差点分岐交通量・横断歩行者交通量・リンク 長・車線数・右左折専用レーンの数・長さなど
現状再現方法	必要最小限の入力で現状再現が可能。WATSimでは、平 均車頭時間間隔と単路部の飽和交通容量が重要
出力値	平均運行時間・平均遅れ時間・信号待ち行列時間・ネット ワーク車両滞留密度・待ち行列長など

秦野駅前道路網 図 1

4.研究の手順

研究の手順は以下の通りである。

ネットワークの構築:図2に秦野駅前のネットワ -ク図を示す。

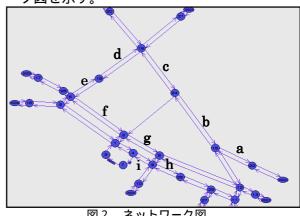
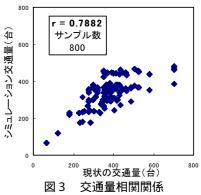


図 2 ネットワーク図


交通量の入力:対象地区の各交差点に流入する1 時間ごとの方向別交通量を入力する。本研究では通 勤、私事、帰宅の各目的のピーク時間について分析 できるように、6時から12時、15時から19時 までの計10時間分の交通量を入力した。

信号現示の設定:各交差点の現状の交差点現示を 計測し、その数値を代入した。

調整:各交差点からの流入量、右左折の割合を設 定し、シミュレーションを行い、各リンクの交通量 のデータを算出した。図3に各リンクの現状の交通 量と WATSim 上で出力された各リンクの交通量の相 関関係を示すが、ほぼ現状再現ができるモデルにな っていることが分かる。

5.解析方法

当該地区で渋滞 が激しい秦野橋北 側交差点、本町四 つ角交差点のそれ ぞれについて、右 左折専用レーンの 設置、一方通行、

キーワード:マイクロシミュレーション、連続交差点制御、交通管理

連絡先:〒135-8533 東京都江東区越中島 2·1-6 東京商船大学 地域計画研究室 TEL 03-5620-7300

表 2 両交差点に適用した交通施策


祝と						
交通施策番号	秦野橋北側交差点	本町四つ角交差点				
1	現状の交通流	現状の交通流				
2	西側流入部に左折専用レーンの設置	現状の交通流				
3	信号制御の調整	現状の交通流				
4	駅前道路の一方通行化策	現状の交通流				
5	現状の交通流	迂回ルートの設置				
6	現状の交通流	各流入部に右折専用レーンの設置				
7	西側流入部に左折専用レーンの設置	各流入部に右折専用レーンの設置				
8	信号制御の調整	各流入部に右折専用レーンの設置				
9	駅前道路の一方通行化策	迂回ルートの設置				
10	駅前道路の一方通行化策	各流入部に右折専用レーンの設置				

迂回ルートの設置、現示の変更を組合わせて10の ケースを設定し、対象地区の交通がどのように改善 されるかについて解析を行った。

交通施策ごとに、車両1台あたりがどのくらい遅れているのかを示す遅れ時間と、ネットワーク上にどのくらいの車両が滞留しているのかを示すネットワーク車両滞留密度という2つの指標を算出し、比較評価を行った。さらに、交通施策適用前後での1台あたりの平均運行時間の差を求め、一般化費用に換算することにより交通施策の効果を検証した。

6.交通施策ごとの比較

交通施策ごとの比較を図4に示す。

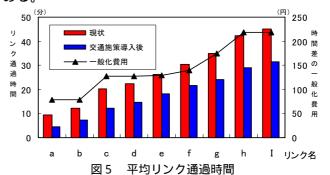
秦野橋北側交差点のみに交通施策を適用させた施 策番号2,3の場合、施策番号1の現状の交通流よ りも車両遅れ時間、車両滞留密度が大きくなってい る。反対に両交差点に交通施策を導入した施策番号 9、10の場合、遅れの改善が大きいことを示している。なお将来交通量について同様の比較を行った ところ施策10が最も効果を示した。そこで施策10を取上げ、現状と比較して車両遅れ時間の低減、 車両滞留密度の減少が図られたかどうか、統計的に 検証することとした。

表3 対象交差点周辺のみの検定

対象交差点周辺リン				
交通施策番号	1	10	t値	
車両1台当たりの各リンク平均遅れ時間(s)	34.87	23.25	5.06	
標準偏差	17.32	8.74	5.00	
ネットワーク滞留密度(%)	26.85	22.19	1.96	
標準偏差	17.02	13.64	1.90	

棄却域:t>1.99

表 4 ネットワーク全体の検定


ネットソーク全体にあ			
交通施策番号	1	10	t値
車両1台当たりの各リンク平均遅れ時間(s)	36.23	30.75	5.37
標準偏差	31.22	23.91	5.57
ネットワーク滞留密度(%)	17.92	15.32	5.29
標準偏差	16.04	10.88	5.29

棄却域:t>1.96

t値から、表3のネットワーク滞留密度を除き、 統計的に有意であることを示している。さらに具体 的な施策を施した交差点周囲への改良よりもネット ワーク全体において及ぼす効果が大きいことが示さ れた。

7.リンク通過時間の比較

秦野橋北側交差点、本町四つ角交差点のそれぞれを共に通過するルートを設定し、現状と交通施策導入後の平均リンク通過時間の差を示した。また、1時間当たりの平均労働賃金^{注)}を乗じて、貨幣に換算した。図5に1台当たりの平均リンク通過時間の比較を示す。なおリンク名は図2に明記したとおりである。

交通施策導入前後では、1台あたり時間にしておよそ15分、一般化費用にしておよそ220円ほどの減少分が見込めた。すなわち交通施策適用により、十分な効果が期待できると容易に考えられる。

8.まとめ

本研究では、単路部や単一交差点のみではなく、 連続する交差点における複合的施策の有効性を検証 した。その結果、単一交差点のみの交通施策適用で は解消されなかった渋滞までもが少なからず解消さ れるという結果に至った。今後はネットワークの規 模を広げ、より広域な面的な制御に取り組む必要が あると考える。

謝辞:本研究を行うにあたり、秦野市よりデータ提供を 頂いた。ここに記して謝意を表する次第である。

注) 南関東の労働者 1人 1 時間あたりの平均労働賃金: 969 円

参考文献

1)交通工学研究会編:やさしい交通シミュレーション pp.9-38.平成 12 年 6 月