業務地区における物流共同化方策に関する研究 - 丸の内地区を事例として -

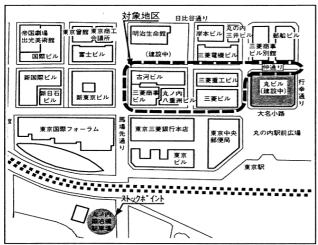
東京商船大学 学生員 龍太 小池 東京商船大学 正会員 高橋 洋二 東京商船大学 正会員 兵藤 哲朗

1. はじめに

都市内の交通渋滞,環境問題は深刻で,その要因のひ とつに物流車があげられている.物流車の効率を高め る方策として物流共同化¹⁾²⁾が注目されてきたが,平成 14 年 2 月に東京丸の内地区では「丸の内地区物流 TDM 実証実験」3)が実施された、本研究は実証実験の調査結 果を用い、実験で行なわれた共同配送・駐車マネジメン トが交通面,環境面に及ぼす効果を明らかにすること を目的としている.

2. 丸の内地区物流 TDM 実証実験の概要

実証実験の概要を表 1,調査項目を表 2 に示す.


表1 実証実験の概要

· 人能人员 · 风能							
実験対象地区		象地区	千代田区丸の内2丁目2街区(古河・三菱商事ビル街区 三菱重工・三菱ビル街区)				
	実験期間		平成14年2月1日~2月28日(19日間) 午前8時~午後17時				
	システム	横持ち 共同化	幹事会社を中心とした複数の物流事業者の連携による共同配送				
			幹事会社の既存配送拠点またはストックポイント*1 で貨物を集約し				
			実験対象地区まで配送				
			環境自動車使用				
l			共同配送手数料は一律50円/個				
施			取扱対象貨物は限定				
策		縦持ち	各ビルの地下荷捌き所の縦持ち要員がビル内の配送先まで配送				
		共同化	各ビルの地下荷捌き所はドライブスルー方式				
	駐車マネジメント		誘導員や放送によるドライバーへの路上駐車抑制の呼びかけ				
			ビル正面玄関からの台車による貨物の搬出入禁止				
			貨物の配送には貨物用エレベータの利用				
			地下駐車場の駐車料金は30分無料				

1 ストックポイントとは貨物の集約・積み替えを行う共同配送拠点 (以下 SP とする)

表 2 実証実験の調査項目

調査項目						
	ドライバー(配送時間・距離・個数)					
日報	ストックポイント・配送拠点(受付時間・個数・事業車名)					
	地下荷捌き所(縦持ち出発時間・個数・配送先)					
	路上駐車・地下駐車場利用状況(駐停車時間・貨物の種類)					
実態調査	交通量調査(仲通り進入車両台数)					
大心则且	貨物用エレベータ利用状況(利用人数・待ち時間)					
	ストックポイント利用状況(入出庫時間・個数)					
マン・ケート	共同配送スタッフ(幹事会社),参加・非参加事業者					
ノンケート	テナント、オフィスワーカー・来街者					
その他	GPS付きカーナビによる共同配送車両の輸送実態調査					
-C 071E	デジタル万歩計(PFAMON)による縦持ち栗員の配送宝能調					

実験対象地区 図 1

3. 丸の内物流 TDM 実証実験の調査結果

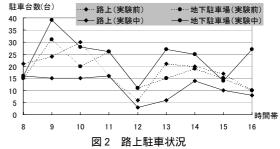
(1)横持ち共同化,

表3 SP利用状況

	SP到着便数(台)	SP出発便数(台)	流入車両削減率
19日間合計	186	125	33%
1日の平均	9.8	66	33%

表 4 走行距離と環境負荷排出量 2

		実験前	実験中	削減率
走行距離	環境自動車以外	345.8	157.0	-
た11 距離 (km)	環境自動車	0.0	163.0	-
(KM)	合計	345.8	320.0	-7%
環境負荷	PM(浮遊粒子状物質)	1670.4	837.2	-50%
(g)	NO _x (窒素酸化物)	173.3	78.7	-55%


2 環境負荷排出係数(平成9年度)より算出

(実験前は推計値)

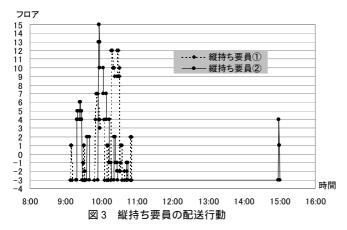
横持ち共同化では、SPにおいて貨物の集約、積み替 えを行ったことで実験対象地区への流入貨物車両が3 割削減(表3),また、総走行距離は7%、環境負荷につい ては No_x が 50%, PM が 55%削減された(表 4).

(2)駐車マネジメント

貨物車の路上駐車状況は、実験前は全体の 5 割であ ったが実験中は3割に低減した.(図2)

(3)縦持ち共同化

実験中に縦持ち要員が常に携帯していた PEAMON(PHS による位置特定機能を備えた機器)と,縦持ち要員が 配送出発時に記入していた日報を照合させた結果は


- 一回の縦持ち平均所要時間 午前:9分 午後:2分
- 一回の縦持ち平均個数 午前:11 個 午後:3 個
- 一日の平均配送頻度 午前:4回 午後:1回

となり、一日の配送の約8割が午前中であることが わかる.また縦持ち共同化により地下駐車場での貨物 車の駐車時間が削減されたことも確認できている.

PEAMON から得られた縦持ち要員2人のある一日の配 送行動を図3に示す.

キーワード:業務地区,物流共同化方策,縦持ち,横持ち

連絡先: 〒135-8533 東京都江東区越中島 2-1-6 TEL 03-5245-7300

4.シミュレーション分析による共同配送の効果検証 (1)シミュレーションの目的と概要

シミュレーションにより貨物車が SP を出発してか らビル内の配送先に配送されるまでを再現し,共同配 送の効果を検証する.本シミュレーションでは縦持ち 共同化は前提としており、横もち共同化の有無による 影響を明らかとする.また,対象ビルとしては配送行動 を調査した三菱ビルを取り上げている.

(2)シミュレーションの方法

実証実験での共同配送の効果検証

実験に参加した貨物車数と貨物量を前提に横持ち共 同化を行なった場合の効果を分析する.入力データは 表5のとおりである.

表 5 λカデータ

1K 3 //JJ - 9							
縦持ち共	同化	0	0				
横持ち共	同化	0	×				
SP出発間隔	午前	34.3(指数分布)	24(指数分布)				
(分/台)	午後	225(指数分布)	157.5(指数分布)				
平均配送貨物	午前	14.6	10.2				
個数(個/台)	午後	4	2.8				
平均貨物荷下在	5し時間(分)	3					
荷捌きスペース		場1台分					
可加され、人	許容量(個)	10	00				
エレベータ	台数(台)	1					
	許容量(個)		}				
各フロア滞在	時間(分)	2.5					
縦持ち		2					
ビルの	階数	B4∼15F					
-	T +0 PEANON - 12 FB 781						

日報,PEAMON より観測

参加事業者が増えた場合の共同配送の効果検証

実験に参加しなかった貨物車がすべて横持ち共同化 に参加したと仮定し、その効果を推計した.この場 合,SP から出発する共同配送車の間隔を変化させ,そ の効果を比較した.(表6参照)

表 6 参加事業者が増えたと仮定した場合の入力データ

	ケース	横持ち 共同化 なし	SP*3	1	2	3	4	⑤	6	7
00113%		指数 分布	固定間隔							
SP出発 間隔(分)	8:00~9:30	4.7	15	15	15	30	30	15	30	30
日刊代(ノ」)	9:30~12:00	3.6	30	15	15	30	30	30	15	15
	12:00~17:00	5.5	60	15	30	30	60	30	30	60
平均配送	8:00~9:30	6.2	19.7	19.7	19.7	39.3	39.3	19.7	39.3	39.3
貨物個数	9:30~12:00	5.2	43.6	21.8	21.8	43.6	43.6	43.6	21.8	21.8
(個/台)	12:00~17:00	2.2	24.0	6.0	12.0	12.0	24.0	12.0	12.0	24.0

3 SP は実験中のストックポイントでのスケジュール

(3)シミュレーションの結果

ビル内地下駐車場における貨物車の平均駐車待ち行 列・平均待ち時間、地下荷捌き所における貨物の平均滞 留個数・平均滞留時間を示す.

実証実験での共同配送の効果

実験の参加事業者が少なく,貨物車数・貨物量が少な かったため,地下駐車場・地下荷捌き所に余裕があり、 貨物車の平均駐車待ち行列・平均待ち時間,貨物の平均 滞留個数・平均滞留時間はいずれも小さな値を示した.

参加事業者が増えた場合の共同配送の効果

共同配送の参加事業者が増えた場合, 縦持ち共同化 と横持ち共同化の連携による効果が著しい.

(図4,図5参照)

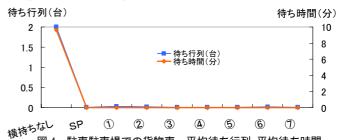
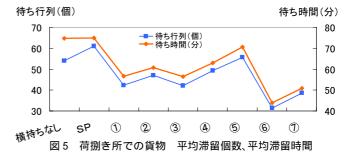



図 4 駐車駐車場での貨物車 平均待ち行列、平均待ち時間

5.まとめ

実証実験の調査結果から、物流共同化、駐車マネジメ ントの効果が示された.さらに,シミュレーションの結 果から,物流共同化において参加事業者を増やしてい くことの重要性が明らかとなった.今後の課題とてシ ミュレーションモデルの範囲を広域化し,物流共同化 の効果を明らかにすることがあげられる.

謝辞

本研究を進めるにあたり、東京商船大学 商船学部 流通情報工学課 程 2002 年度卒業生の滝本 菜実子氏に多大な協力をしていただいた. ここに深く感謝の意を表する.

参考文献

- 1)社団法人全日本トラック協会(2000):福岡市天神地区における共 同集配の促進調査
- 2)さいたま新都心共同輸送株式会社(2000):さいたま新都心共同集 配システムの基本構想書
- 3)都市計画論文集(2002): 丸の内地区における交通・環境改善及び 物流効率化のための実証実験