スライドコッターセグメントの実施工に向けた実証試験(その3) - 曲げモーメントと開口角の関係 -

前田建設工業(株)	正会員	山田 倫	野田	賢治
フジミエ研(株)	正会員	森孝臣*2	鈴木	則夫

1.はじめに

筆者らは、シールドトンネル内面が平滑で二次覆工省略に適したスライドコッターセグメントを開発した. 本セグメントは,継手が露出しないスライドコッター継手を有している.この新しい継手構造であるスライド コッター継手を回転バネとしてモデル化する際のひとつの検証として,曲げモーメントと開口角の関係に着目 して整理した試験結果について報告する.

2. 試験目的

回転角と曲げモーメントの関係を明らかとする.その際に初期締結力,シール材の有無による影響を確認す る.また,軸力による影響を確認する.

3.試験概要

試験は平組みした2ピースのRCセグメント(外径 3,650×厚さ200×幅1,000[mm])に内空側及び地山 側より2点載荷を行った.セグメント継手は,スライ ドコッター継手×2箇所とする.試験概要の一例とし て軸力導入継手正曲げ試験を図 - 1,写真 - 1に示す. 軸力の導入は PC 鋼より線による緊張にて行う.また, 開口角を算出するため内空側と地山側にそれぞれ3箇 所 形ゲージを設置する.

4.試験ケース

シール材,初期締結力による影響を見るために継手 面構成部材の条件を変えた継手曲げ試験(表 1)を 行った.その後,継手曲げ試験による結果から継手面 構成部材による影響を把握した上で,導入軸力の影響 を見るための軸力導入継手曲げ試験を行った(表 2).

表 - 1 継手曲げ試験条件一覧		
CASE	反力材	シール材
1	スプリング (締結力 小)	なし
2	A- 95 (締結力 大)	なし
3	A- 95 (締結力 大)	あり

表 - 2	軸力導入継手曲げ試験条件一覧		
ケース	正曲げ試験時	負曲げ試験時	
	導入軸力[kN]	導入軸力[kN]	
1	0.0	0.0	
2	100	100	
3	200	200	
4	300	300	

キーワード シールドトンネル,二次覆工省略,高速施工,ボルトレス,継手曲げ試験,回転バネ定数 ·連絡先 *1〒102-8151 東京都千代田区富士見 2-10-26 前田建設工業(株)土木本部土木部 TEL03-5276-9472 *2 〒102-0072 東京都千代田区飯田橋 3-11-18 フジミ工研(株)セグメント技術部 TEL03-3264-4825

軸力導入継手曲げ試験状況 写真 1

5.継手曲げ試験の結果

図 - 2 に継手正曲げ試験によるM - 図(曲げモーメントと継手部回転角との関係図),図 3 に継手負曲 げ試験によるM 図を示す.小さなモーメントが作用する段階においては,締結力,シール材による影響が 見られるが,設計モーメント作用時においては,全ケースとも概ね同様の勾配を示している.表 3 に設計正 曲げモーメント作用時の勾配,表 4 に設計負曲げモーメント作用時の勾配をそれぞれ示す.

6.軸力導入継手曲げ試験の結果と考察

継手曲げ試験の結果より締結力,シール材の影響が少ないことから,より実施工を模擬していると考えられる CASE-3を基本ケースとして試験を行った.図-4に軸力導入継手正曲げ試験によるM-図,図-5に軸 力導入継手負曲げ試験によるM-図を示す.全ケースとも設計モーメントの中程に至るとほぼ線形的な勾配 を示しており,設計モーメント作用時には上記の継手曲げ試験結果と同様な勾配となった.表 5に設計正曲 げモーメント作用時の勾配,表 6に設計負曲げモーメント作用時の勾配をそれぞれ示す.

図 4 正曲げモーメントと開口角の関係(導入軸力別)

表 5導入軸力別正曲げモーメントと開口角の関係

	導入軸力(kN)	M / の勾配	
ケース1	0.0	5,900	
ケース2	100.0	5,100	
ケース 3	200.0	6,300	
ケース4	300.0	5,500	

図 5 負曲げモーメントと開口角の関係(導入軸力別)

表 - 6 導入軸力別負曲げモーメントと開口角の関係			
	導入軸力(kN)	M / の勾配	
ケース1	0.0	1,400	
ケース2	100.0	1,000	
ケース3	200.0	1,000	
ケース4	300.0	1,300	

7.おわりに

設計モーメント作用時においては,締結力,シール材,導入軸力による影響が認められず,軸力を考慮する ことで回転バネによるモデル化が可能と考えられる.本セグメントは今夏発進する延長約 500mの工事におい て実施を予定している.今後は,この実施工において,さらなる検証を進める所存である.