F E M解析による曲線形凍土と直線形凍土の内部応力の比較

(株)精研	正会員	隅谷大作
(株)精研	正会員	上田保司
(株)精研	正会員	松岡啓次

1.はじめに

シールドトンネル間の拡幅を,曲線形凍土による凍結工法(以下,曲線凍結)で施工することが考えられ る.曲線凍結の場合,従来の凍結工法(以下,直線凍結)より,必要凍土厚や凍結土量の削減等のメリット

が期待できる.反面,曲線形凍土内部に 過大な応力が発生するデメリットの可能 性も考えられる.そこで本報では,2次 元弾性FEMによって曲線凍結と直線凍 結のモデル解析を行い,両者を比較した 2.解析モデル及び条件

図1に示すシールドトンネル間を拡幅 するモデル解析を行った.曲線凍結と直 線凍結の凍結管埋設はシールドトンネル の上下端からとし,シールドトンネルの 外径及びトンネル間の離隔は両者とも同一 とした.また,拡幅後に構築する構造物の 高さをシールドトンネル外径の 1.3 倍とし, 凍土を掘削しない条件で曲線凍結の埋設半 径と直線凍結の埋設角度を決めた.解析は 曲線凍結と直線凍結それぞれについて、凍 十厚が 1.0m と 2.0m の計 4 ケースとした. シールドセンターが GL-25m に相当する荷 重が凍土に作用した状態から、掘削完了時 点を想定して, 凍土とシールドトンネルに よって囲まれた未凍土の領域を瞬時に取り 除いたときに発生する凍土内の応力を調べ た.なお,解析モデルが左右対称のため,図2 に示す F E Mのメッシュは片側半分とした. 解

析に用いた諸数値を表1に示す.

3.解析結果

図2の破線領域内の凍土の主応力分布を,図3 に示す.曲線凍結及び直線凍結ともに,シール ドトンネルと接する付け根部分では圧縮応力が 発生している、その他の部分では、外縁側に圧 縮応力,内縁側に引張応力が発生している.た

凍結,有限要素法,曲線,凍土

〒542-0066 大阪市中央区瓦屋町2丁目11番16号 (株)精研

図1 シールドトンネル間の拡幅モデル

図2 FEMメッシュ図

TEL:06-6768-5031

FAX:06-6768-1508

•離隔 10.0m ・中心の深度 GL-25.0m •弾性係数 2.1×10⁵MN/m² ・断面2次モーメント 8.9×10-4m4/m

・弾性係数 4.0MN/m²

・ポアソン比 0.4 ールドトンネル

·外径 10.0m

だし,直線凍結の場合,凍土天端付近では外縁側が引張,内縁 側が圧縮となっている.また,いずれのケースでも凍土に発生 する主応力は外縁及び内縁で大きく,凍土の内部ほど小さい.

図4に示すように,曲線凍結と直線凍結の主応力分布を外縁 及び内縁で比較した.ここで,角度は,図1に示すように, 凍土天端を0℃する角度である.図4左の凍土厚が1.0mの場合 曲線凍結では、外縁の0で圧縮応力が最大、内縁の0で引張応 力が最大となる.一方,直線凍結では,曲線凍結とは逆に,外 縁の0 で引張応力が最大,内縁の0 で圧縮応力が最大となる. ただし,直線凍結の30 付近では,外縁と内縁の応力が0 とは 逆になる. 凍土厚が 2.0m の場合(図4右)も, 外縁と内縁に作 用する主応力分布の傾向は,凍土厚1.0mの場合とほぼ同じであ る.つまり,曲線凍結及び直線凍結とも,最大圧縮応力及び最大 引張応力は0 すなわち凍土の天端で発生する.最大引張応力は 曲線凍結と直線凍結に大きな差は見られないが,最大圧縮応力は 曲線凍結の方が直線凍結より小さく,安全側であると思われる また,曲線凍結と直線凍結ともに凍土厚 2.0m の方が 1.0m よ りも圧縮応力及び引張応力とも小さくなる傾向から, 凍土が 厚いほど安全側であるといえる.

図5にシールドトンネルと凍土との接合面(凍着面)に 作用する剪断応力と垂直応力の分布を示す.ここで,角度 は,図1に示すように,シールドトンネル上端を0℃する 角度である.図5左の凍土厚が1.0mの場合,剪断応力は曲 線凍結の方が直線凍結よりも小さく,垂直応力は曲線凍結 の方が直線凍結よりも大きい.これは凍土厚が2.0mの場合 (図5右)も同様である.剪断応力の小さい曲線凍結の方が, 直線凍結よりも凍着確保のためには有利であると考えられる. また,垂直応力が大きいほど凍着強度が大きくなる¹⁾ことが わかっているので,垂直応力の大きい曲線凍結の方が,直線 凍結よりも凍着強度が増加すると考えられる.

<u>4.まとめ</u>

曲線凍結と直線凍結の比較結果を列挙する.

- ・最大引張応力は両者に差が見られないが,最大圧縮応力 は曲線凍結の方が直線凍結よりも小さく,安全側である.
- ・曲線凍結では,直線凍結に比べ接合面(凍着面)に作用 する剪断応力が小さく,凍着確保の上で有利である. また,垂直応力の大きい曲線凍結の凍着強度は,直線凍 結よりも増加すると考えられる.
- <u>文献</u>1)森内他:凍着剪断強度に及ぼす垂直方向応力の影響, 雪氷全国大会講演予稿集,pp.195,2002.

