一様勾配斜面上で発生する砕波の形状パラメータと気泡混入に関する実験的研究

金沢工業大学 正会員 鷲見 浩一 金沢工業大学大学院 学生員 橋本 彰雄

1.はじめに

砕波は波浪の静穏化を支配し,最大波力を規定する重要因子である.特に砕波によって気泡が波内部に混入する過程は、砕波機構の解明や波浪制御および海中への多量の溶存酸素供給等の面において極めて重要である.これまでに,砕波に伴う波内部への気泡混入現象については幾つかの研究が行われ,重力波前面に微少な凹凸部(微少凹凸乱れ)が形成され,この微少凹凸乱れ領域に表面張力波と推察されるくびれが発生し,くびれからの気泡連行過程が報告されている.しかし,気泡混入瞬時のくびれ・微少凹凸乱れ等の重力波に形成される形状パラメータと混入気泡との幾何的特性に関しては議論が充分ではなく、研究の余地が多く残されているのが現状である.

本研究は,一様勾配傾斜面上で発生する砕波現象を対象に,超高速ディジタルビデオカメラを用いた可視化 水理実験を実施して,気泡混入瞬時の形状パラメータと入射波条件を幾何的に解析し,気泡の波内部への混入 特性を考究しようとするものである.

2.実験概要

図-1 に示す金沢工業大学の片面ガラス張り 2 次元造波水槽(長さ 10m, 幅 0.7m, 高さ 1m)を用いて,水深 h=40cm の水平固定床上に勾配 i=1/10(長さ 4.8m, 高さ 0.48m)のアクリル製の海底勾配を設置し,砕波瞬時の気泡混入現象を検討する鉛直 2 次元の水理実験を行った.実験波は,波高 H_i=6.0,8.0,10.0cm,周期 T=0.8,1.0,1.2s を組み合わせた 9 種類の規則波とした.砕波瞬時の気泡混入過程の可視化画像の撮影には,撮影速度 1/4500 コマ/s の超高速ディジタルビデオカメラ(フォトロン製: FASTCAM)を使用した.撮影領域(縦 12.5cm × 横 14.0cm)は図-2 に示すように傾斜面上の砕波点に設け,画像を鮮明に撮影するためにメタルハライドランプを照射した.

3.実験結果と考察

砕波瞬時の気泡混入現象は極めて不安定な状態であり,造波開始時の静水状態,微小な水深変化により微妙に変化する.したがって,本実験では前述の9種類の実験波を繰り返し造波し,各入射波について50ケース(合

計 450 ケース)の気泡混入瞬時の画像を得た .この撮影画像の解析により,図-3 に示すように気泡混入瞬時の波面は,微少な凹凸のある領域(微少凹凸乱れ領域 Lr)と滑らかな水表面から構成され,気泡は微少凹凸乱れに形成されるくびれから波内部へ混入することが判明した.くびれは重力波の進行方向と逆方向に波内部に向かって生じ,くびれの内面が接することによって空気を流体内部に閉じこめる.

一様傾斜面上の砕波において気泡が波内部に混入する形式は大別すると4パターンであり、図-4にくびれから混入形式の模式図を示し、図-5に波峰前面の微少凹凸乱れからの気泡の混入瞬時の画像を例示する.Pattern1~3は、重力波の進行方向に対して気泡がそれぞれ水平方向、斜め上方向、斜め下方向に混入する場合であり、Pattern4は微小凹凸乱れ下端と乱れてい

図-1 実験水槽(単位:cm)

図-2 撮影領域(単位:cm)

キーワード 砕波,気泡,一様勾配斜面,形状パラメータ,超高速ディジタルビデオカメラ

連絡先 〒921-8501 石川県石川郡野々市町扇が丘 7-1 金沢工業大学工学部土木工学科 T E L 076-294-6713

ない水面の境界から気泡が混入する場合である.

図-6(a),(b) はそれぞれ Spilling 型砕波と Plunging 型砕波の気泡混入位置と気泡径の関係を示している. なお,図中の曲線は進行波の波形を時間間隔?t=0.005s で図示しており,実線は微小凹凸乱れ領域を点線は乱れのない水表面を示している.混入気泡の位置は,波形勾配と砕波形式に強く支配され,Spilling 型砕波では0.02? X/L?0.12 の広範囲で気泡が混入するのに対して、Plunging型砕波では0.01? X/L?0.05の範囲でのみ気泡が混入し,波形勾配が小さいほど静水面近傍で気泡は水塊内に連行されている. また,気泡径は波形勾配が大きいほど小さくなることが明らかとなった.

空気は波峰前面の微少凹凸乱れ領域に形成されるくびれから波内部に取り込まれる.したがって,微少凹凸乱れとくびれは,気泡混入現象を支配するの重要な要素であると考えられので,入射波の相違による形状パラメータの変化と気泡混入特性を検討する.図-7 は,くびれの内面が接し気泡が波内部に混入する瞬間の水平距離aを微少凹凸乱れの水平方向距離Lrcos?で無次元化したa/Lrcos?と微少凹凸乱れの鉛直方向距離Lrsin?を入射波高で無次元化したLrsin?/H,の関係を波形勾配H//Lについて示し

たものである.同図より,くびれの水平方向距離 a は,波形勾配と $Lr\sin?/H_I$ に大きく支配され,波形勾配が比較的小さく plunging 型砕波となる 0.028 ? H_I/L ? 0.055 では $Lr\sin$? が H_I の約 4 割以下で気泡が波内部に連行される.一方,波形勾配が大きく spilling 型砕波となる 0.080 ? H_I/L ? 0.110 では, $Lr\sin$? が H_I の約 2 割以上で気泡が波内部に混入することが判明した.なお, $Lr\sin$? が H_I の 2 割から 4 割のときは,すべての波形勾配で気泡の混入が確認でき a が最大値となることが見出された.

図-3 形状パラメータ

図-4 気泡混入形式

(a) Pattern1

(b) Pattern2

(c) Pattern3

図-5 気泡混入の撮影画像

(a) spilling 型砕波

(b) plunging 型砕波

図-6 気泡径と混入位置

図-7 気泡混入特性

本研究では、超高速デジィタルビデオカメラを使用した水理実験を実施して、一様傾斜面上の砕波に伴う気泡混入現象を波面上に形成される形状パラメータと関連づけて考究した。その結果、気泡は波前面の微少凹凸乱れ領域に形成されるくびれが、重力波の進行方向と逆方向に波内部に向かって生じ、くびれの内面が接することによって空気を波内部に閉じこめることが明らかとなった。また、波内部への気泡混入現象は、くびれや微少凹凸乱れ等の形状パラメータによって強く支配され、微少凹凸乱れの大きさと波形勾配により気泡混入状態が異なることが確認された。

参考文献

4.おわりに

1)鷲見・岩田(2002):潜堤上の砕波に伴う気泡混入過程と気泡径に関する実験的研究,海岸工学論文集,第 49 巻,pp.101-105.