高濃度固液混相流に及ぼす砂粒子径の影響

パシフィックコンサルタンツ(株) 立命館大学大学院	正会員 学生員	内海敦郎 黒田尚吾	立命館大学理工学部 立命館大学理工学部	正会員 正会員	員 江頭進治 員 伊藤隆郭
1.はじめに 江頭らの研究によると, 流動するような粗粒子と清水の混合物 象とすると,土石流~掃流砂流にまた 統一的に説明できる段階にある ¹⁾ 。一 土石流の観測や微細砂を伴う流れに関 験データ ²⁾⁴⁾ によると 流れの構造が	粒子が層 の流れを ☆がる流れ する水路	0.6 C _f がをの実の	Flm e data O $d=0.218 \text{ (cm)} q_m \approx 50 \sim 100 \text{ (cm)}$ D $d=0.030 \text{ (cm)} q_m \approx 55 \text{ (cm }^2/\text{s})$ $\times d=0.029 \text{ (cm)} q_m \approx 55 \text{ (cm }^2/\text{s})$ $\Delta d=0.029 \text{ (cm)} q_m \approx 28 \text{ (cm }^2/\text{s})$ $\bullet d=0.029 \text{ (cm)} q_m \approx 9 \text{ (cm }^2/\text{s})$	² /s) ×°°°°°°°°	
とは異なることが指摘されている。本	前述のも 研究では	0, 03	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
浮遊砂を伴う流れと土石流における力 を確立することを目的とし, 微細砂を ついて検討する。	学の統一 伴う流れ	化 に 02年		, ,	
2.実験データの解析 実験には長さ1. の可変勾配式矩形断面水路を用いてい	2m , 幅 5 る。上流	cm 01 + 端			
より定常的に給水および給砂を行い, 土石流を形成させている。使用珪砂の ほぼ一様である。珪砂の材料特性は次	定常状態 粒度分布	の 。 は 。 あ	∞من المحمد ا 5 10	$\frac{15}{\theta}$	(deg.) ²⁰
$\mathbf{S}_{\circ} d_{50} = 0.029 (\text{cm}), \phi_s = 38.3^{\circ}, c_* =$	0.537 , σ /	ρ ₂₁	図-1 平衡勾配と [「] ^{Run003}	俞送濃度 ² ⊤	
= 2.65。ここに, $d_{\scriptscriptstyle 50}$:中央粒径, $\overline{\phi_{\scriptscriptstyle s}}$:内部摩	擦 <i>z</i> (cm.)	$q_m = 50.5 (\mathrm{cm}^2/\mathrm{s})$ z (cm	ι) 15 -	
角の実測平均値, <i>c</i> _* :静止堆積濃度, 粒子の比重 σ:砂粒子の密度 σ:	$\sigma/ ho:$ 固	体 ¹⁻	$\theta_e = 9.25 \text{ (deg.)}$	1 +	
粒子のに重,0.0 である。実験においては,砂粒子と水 流量を 9.28.55(cm ² /s)のように変化	液体の密 の混合物 させて .	し の ₀₅- 流		0.5	
れの規模に及ぼす砂粒子径の影響につている。図-1は平衡勾配と輸送濃度の	いて検討 関係を示		100 200 u (cm /s)	0 	1 2 w ₀ /μ _τ (z)
たものである。図には粒径 d = 0.029 (c 江頭らによって得られた粒径 d = 0.2 び d = 0.030 (cm)の実験値も掲載してい d = 0.218 (cm)のデータは流量 q_ =50 -	m)のもの 218(cm)お \る ^{5) , 6)} 。 ~ 300(cm ²	کے ح (cm) 15-	$q_m \approx 55$ (Rum006 $q_m = 27.7 \text{ (cm }^2/\text{s})^2$ (cm $ heta_e = 8.92 \text{ (cleg.)}$	(cm ² /s) 2 T 1) 1 5 T	
の範囲で流れの規模を変化させて実験 るが,この範囲においては,勾配に対	を行って して一意	い ¹ 的	$c_{f} = 0.147$ $h_{t} = 0.437$ (cm)		
に輸送濃度が定められている。これは 流流動することを示している。	:, 粒子が d = 0.029	`層 。		0	
0.030 (cm)の実験データについてみると	:,単位幅 0.218(cm)	流)分 ^{_05}	$\frac{1}{2} \frac{100}{200} \frac{200}{2}$	(cm^2/c)	$\frac{1}{\mathbf{w}_{0}} \int u_{\tau} (\mathbf{z})$
布形にほぼ一致しており粒子が層流流	動するこ	د ² 1	$q_m \approx 20^{\circ}$ Run124	2 T	
を示唆している。単位幅流量 q _m ≈ 28 (c	m²/s)およ	び z(cm)	$q_m = 8.62 (\text{cm}^2/\text{s}) \boldsymbol{Z}$ (cm	1) [15]	
流量 $q_m \approx 55$ (cm ² /s)の実験データを見る	ると ,流量		$\theta_e = 9.11 (\text{deg.})$		
増加に伴い、粒子が層流的に流動して	いると考	え 1-	$D^{f} = 0.407 (\text{cm})$	1	
られる単位幅流量 q _m ≈ 9 (cm ² /s)の実験	データよ	1) 05-	=0.345-0.380 (cm) h=	os+ ⊽	
も,輸送濃度が増加している。図-2は 勾配の条件における流速分布の実験デ	t , ほぼ同 ⁱ ータであ	- る。 ∘		0	
なお,図は勾配が約9°における流速	分布と,	河	100 200 - <u>u</u> (cm/s)	ē	1 2
床からの高さ z における沈降速度 w_0	と摩擦速	度	$q_m \approx 9$ (c)5⊥ cm²/s)	w ₀ /u _τ (z)
$u_{\tau}(z)$ の比の分布を示している。ここ ⁻	で , w。に	は	叉-2 流速分布 、沈隆词	東度と摩褶	鼻速度の比

keywards 流れの規模,レイノルズ数 〒525-8577 滋賀県草津市野路東 1-1-1

TEL 077-561-2732 FAX 077-561-2667

Rubey の式を用い,摩擦速度は $u_r(z) = \sqrt{g(h_r - z)} \sin\theta$ としている。流速分布を見ると,流量の増加に伴い 水面近傍に流速の変動が大きくなっている。次に,任意の高さzにおける沈降速度 w_0 と摩擦速度 $u_r(z)$ の比 の分布を見ると,いずれのケースにおいても,概ね $w_0/u_r(z) \le 1$ の領域にあり,粒子が浮遊するような領域 にある。

<u>3.二層モデルの適用</u>前章で示された実験データの考察によれば,流量が増加すると粒子が層流流動するときの流れとは若干異なる流れを呈することが示唆される。江頭らによる研究によれば,微細砂を伴う流れにおいては,粒子が層流流動する層(下層)と乱流拡散が卓越する層(上層)の二層に分かれることが提案され,二層モデルを用いた検討が行われている⁶⁾。本研究においても,これを適用すると,上層および下層における運動量保存則は**図-3**を参照すると次式のようである。上層($h_c \le z \le h_c$):

 $\tau(z) = \int_{z}^{h_{t}} \rho_{m} g \sin\theta dz \qquad (1)$

 $p_{w}(z) = \int_{z}^{h_{t}} \rho_{m} g \cos\theta dz \qquad (2)$

ここに, p_w は粒子が浮遊しているときの静水圧で ある。下層 ($0 \le z \le h_a$):

 $\begin{aligned} \tau_{y} + \tau_{f} + \tau_{d} &= \int_{z}^{h_{t}} \rho_{m} g \sin\theta dz \qquad (3) \\ p_{s} + p_{d} &= \int_{z}^{h_{s}} \rho (\sigma/\rho - 1) cg \cos\theta dz \qquad (4) \\ p_{s}/(p_{s} + p_{d}) &= (c/c_{\star})^{1/5} \qquad (5) \\ \exists \exists c \in z, \ \rho_{m} &= (\sigma - \rho)c + \rho \ , \ \tau_{y} = p_{s} \tan\phi_{s} \ , \end{aligned}$

$$\begin{split} &\tau_{d} = \rho f_{d} d^{2} \left(\partial u / \partial z \right)^{2} , \ \tau_{f} = \rho f_{f} d^{2} \left| \partial u / \partial z \right| \left(\partial u / \partial z \right) , \\ &f_{d} = k_{d} \left(1 - e^{2} \right) (\sigma / \rho) c^{1/3} , f_{f} = k_{f} \left(1 - c \right)^{5/3} / c^{2/3} , \end{split}$$

図-3 二層モデル

図-4 レイノルズ数と平衡勾配比

c:粒子の体積濃度,e:反発係数, $\tau_y:$ 降伏応力, $\tau_f:$ 間隙水の乱れに伴う応力, $\tau_d:$ 粒子の非弾性衝突に伴う応力, $p_s:$ 静的な骨格圧力, $p_d:$ 粒子衝突に伴う動的圧力, $k_f=0.16$, $k_d=0.0828$ である。また, 式(3)–(5)において濃度を一様($c=\bar{c}$)とし,河床z=0における応力の釣り合いから層流流動層厚比が求められる。 $h_s/h_t = \{(\sigma/\rho-1)\bar{c}+1\}\tan\theta_e/\{(\sigma/\rho-1)\bar{c}\tan\phi_s\}$ (6)。**図-4**は,レイノルズ数と平衡勾配の比の関係を示したものである。平衡勾配比 $\tan\theta'_e/\tan\theta_e$ は,同一の輸送濃度に対して,粗粒子を伴う流れの平衡勾配に対する微細砂を伴う流れの平衡勾配の比である。レイノルズ数 $\operatorname{Re}_D = \rho_m u^2/\{\mu_d(\partial u/\partial z)\}$ の算出については,粘性係数が江頭らの構成則において流動応力 $\tau - \tau_y$ で表されることを考慮すると,次のようである。 $\tau - \tau_y = [(f_d + f_f)d^2|\partial u/\partial d](\partial u/\partial z) = \mu_d(\partial u/\partial z)$ (7)。式(7)において, $u \sim \overline{u}, c \sim \overline{c}, \partial u/\partial z \sim \overline{u}/h \ge 0$ て,流れ全体の代表的な粘性係数 μ_d を用いると,レイノルズ数 $\operatorname{Re}_D = [(\sigma/\rho)\bar{c}+1]/(f_d + f_f)(h/d)^2$ が定義できる。図よりレイノルズ数の増加に伴い,平衡勾配比が減少している。これは流れの規模が増加すると勾配比が減少すること,すなわち,層流流動層の層厚比が減少することを示している。

4. あわりに 流れの規模に及ぼす砂粒子径の影響について検討した。流量の増加に伴い,輸送濃度が増加する。これについて,江頭らの構成則を用いてレイノルズ数を定義し,それと平衡勾配比の関係について検討した。その結果,流量の増加に伴い,平衡勾配比が減少した。これは粒子の層流流動する層が相対的に減少し,流れの上層には構造の異なる流れが形成されていることを示唆している。

<u>参考文献</u>1) 江頭ら:水工学論文集,41 巻,789-794,1997,2) 橋本ら:土木学会論文集,No.545,33-42, 1996,3) 新井ら:土木学会論文集,No.375,69-77,1986,4) (社)土木学会 蒲原沢土石流災害調査特別委員 会:30-43,1998,5) 伊藤:立命館大学学位論文,2000,6) 江頭ら:京大防災研年報,378-2,359-369,1994