粒子画像抽出による浮遊砂濃度推定に関する研究

神戸市立高専都市工学科 正会員 〇柿木 哲哉 辻本 剛三 神戸市立高専都市工学科 学生会員 山田 浩之 衣本 准

1. はじめに

浮遊砂濃度を測る方法として,近年発展の著しい画 像解析を用いた手法がみられる.これは可視化画像の 輝度分布をもとに浮遊砂濃度を算定するものである が,こうして得られた濃度はビデオ画像の質(輝度分 布)に左右され,また,画像の輝度は照明の照度やカ メラの絞り,浮遊物質の濃度・粒径・形状などの相違によ る光の減衰・散乱などの影響を受けやすいことが知られ ている^{1),2)}.そこで本研究では,なるべくこのような条件に 拘束されることのない計測手法を開発することを目的とし て,画像輝度の濃淡から浮遊砂濃度を推定するのでは 無く,浮遊砂粒子の個数を直接,粒子マスク相関法³⁾ を用いて抽出し,浮遊砂濃度を推定することを試みた.

2. 可視化実験および画像解析の概要

2.1 実験装置

図1は可視化実験の様子を模式的に表したもので ある.まずレーザーを水槽側面からガラス越しに水平 に照射し,撮影断面の直上まで入射させる.そして撮 影断面の直上に予め設置しておいた長方形の反射鏡 によりレーザーの進路を鉛直下方に変え,鉛直2次元 の可視化断面を作成し,これを水槽側面からガラス越 しにビデオカメラで撮影した.このとき反射鏡は水中 に設置することになり,流れを若干乱すことにはなる が,本研究で対象としているのは底面近傍であるため 特に問題はないとした.これにより自由水面の影響を 受けることなく安定した可視化断面を作成すること ができた.

2.2 画像解析

写真1は可視化実験で得られた可視化画像の一例 である.これは浮遊砂濃度が一様になるように設定し たもので,造波水路ではなく小さい水槽にて行ったも のである.この写真1内の白く写っている部分が可視 化された砂粒子で,暗く写っているところはレーザー シートが弱い部分もしくは十分に当たっていない部 分である. 従来の手法では輝度と浮遊砂濃度に線形関 係を仮定し、濃度を算定するが、実際はこの様に可視 化画像の輝度分布にはかなりばらつきが見られ、厳密に は線形関係は保たれていないことがわかる. 一様濃度場 であってもこの様に扱いにくく, 一様な濃度場でない場合 についてはさらに扱いにくい. そこで本研究では,なるべ くこの様な条件に拘束されることのない手法として,画像 輝度分布から浮遊砂を粒子として直接判読し,濃度を 算定する手法を採用した.また,輝度情報から粒子を 判別する方法としては、粒子マスク相関法³⁾を用いた。

写真1 可視化画像の一例

2.3 実験ケース

実験は 2 次元造波水路内に粒子径 0.28mm の砂を 用いた移動床部分を設け,周期 1 秒・波高 12cm の規 則波を入射した.また,前述のようにビデオ画像の輝 度は,照明の照度やカメラの絞りなどの相違による光の 減衰・散乱などの影響を受けやすい.そこで,本手法で はこれらの影響をどの程度受けるのかを調べるため,カメ ラのしぼりを変えながら実験を行った.

キーワード 画像解析, 粒子画像抽出, 浮遊砂濃度, 計測手法

連絡先 〒651-2194 兵庫県神戸市西区学園東町 8-3 神戸市立工業高等専門学校都市工学科 TEL078-795-3270

3. 画像解析結果

図2は可視化実験の結果得られた画像で,図の上下 方向が実空間の鉛直方向を示し,図の左右方向が水平 方向である.波は図の右から左に向かって入射してお り、この画像の波の位相はトラフ付近である. 各座標 軸の値は pixel 表示であるが、このとき 1 pixel は実 空間の 0.15mm に対応している. 従ってこの画像全 体は鉛直方向 67.5mm, 水平方向 105mm の空間を表 している.また,鉛直方向軸のゼロは移動床の底面で あり、この付近に見られる小さな山は砂漣である.ま た,この実験により得られた可視化画像をそのまま掲 載すると見づらいため、色を反転させるなど、図2 は若干画像の調整をしている.この図を見ると,砂漣 上に見える黒い部分は浮遊砂群を表している.このと き波の位相はトラフ付近であったが、ゼロアップから クレスト通過時に巻き上げられた浮遊砂が沖方向に 移送される状態を示すものとなっている.

図3は図2の可視化画像を画像解析した結果である.座標軸の属性は図2と同様である.図中の黒点は 画像解析により抽出された砂粒子である.これより図 2の可視化画像と粒子の空間分布が近似しており,粒 子の抽出過程が適切に行われているのが分かる.

図3 抽出された粒子の空間分布(画像解析結果)

図4は図3の結果を基にして得られた粒子数濃度 の鉛直分布を表す.ここでいう粒子数濃度は、ある一 定面積当りの抽出された粒子数と定義する.また、今 回は一定面積を25×25pixelとした.つまり、画像空 間内の1pixelは実空間内の0.15mmであったことか ら、3.75mm×3.75mm≒14mm²当りの粒子数という ことになる.また、図4は図3中の特定4断面(水平 方向位置200、350、500、650pixel)の粒子数濃度の 鉛直分布を示しており、図の横軸は粒子数濃度、縦軸 は画像空間内の底面からの距離を表し、単位はpixel である.これを見ると水面から底面方向に砂粒子数が 指数的に増加しており、底面の極近傍まで評価できて いるのが分かる.また、断面の位置で鉛直分布に違い があり、砂漣の谷(350,500pixel)に位置する断面の底 面から3cmまでの層で濃度が高いことが分かる.

4. 結論

本研究により得られた主要な結論をまとめると, 1) 本手法を用いることで浮遊砂濃度を推定できること が分かった. 2)底面のごく近傍まで濃度の評価をでき ることがわかった. その他詳細は講演時に述べる.

謝辞

本研究で用いた画像解析のプログラムは近畿大学 竹原幸生先生が作成されたものを使用しており,ここ に謝意を表す.

参考文献

 1)神田ら(1998):画像の輝度情報を用いた浮遊泥濃度 計測手法の開発,建設工学研究所論文報告集,第 40 巻,pp.67-80

2) 灘岡ら(1999): 現地連続計測型多成分濃度計開発の ための基礎的研究,海岸工学論文集,第46巻,pp.1316-1320

3)江藤ら(1996): PTV のための粒子画像抽出法に関す る検討-粒子マスク相関法について-,水工学論文集, 第 40 巻, pp.1051-1058